Pore with Gate: Enhancement of the Isosteric Heat of Adsorption of Dihydrogen via Postsynthetic Cation Exchange in Metal−Organic Frameworks

Three isostructural anionic frameworks {[(Hdma)(H3O)][In2(L1)2]·4DMF·5H2O}∞ (NOTT-206-solv), {[H2ppz][In2(L2)2]·3.5DMF·5H2O}∞ (NOTT-200-solv), and {[H2ppz][In2(L3)2]·4DMF·5.5H2O}∞ (NOTT-208-solv) (dma = dimethylamine; ppz = piperazine) each featuring organic countercations that selectively block the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2011-10, Vol.50 (19), p.9374-9384
Hauptverfasser: Yang, Sihai, Martin, Gregory S. B, Titman, Jeremy J, Blake, Alexander J, Allan, David R, Champness, Neil R, Schröder, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9384
container_issue 19
container_start_page 9374
container_title Inorganic chemistry
container_volume 50
creator Yang, Sihai
Martin, Gregory S. B
Titman, Jeremy J
Blake, Alexander J
Allan, David R
Champness, Neil R
Schröder, Martin
description Three isostructural anionic frameworks {[(Hdma)(H3O)][In2(L1)2]·4DMF·5H2O}∞ (NOTT-206-solv), {[H2ppz][In2(L2)2]·3.5DMF·5H2O}∞ (NOTT-200-solv), and {[H2ppz][In2(L3)2]·4DMF·5.5H2O}∞ (NOTT-208-solv) (dma = dimethylamine; ppz = piperazine) each featuring organic countercations that selectively block the channels and act as pore gates have been prepared. The organic cations within the as-synthesized frameworks can be replaced by Li+ ions to yield the corresponding Li+-containing frameworks {Li1.2(H3O)0.8[In2(L1)2]·14H2O}∞ (NOTT-207-solv), {Li1.5(H3O)0.5[In2(L2)2]·11H2O}∞ (NOTT-201-solv), and {Li1.4(H3O)0.6[In2(L3)2]·4acetone·11H2O}∞ (NOTT-209-solv) in which the pores are now unblocked. The desolvated framework materials NOTT-200a, NOTT-206a, and NOTT-208a display nonporous, hysteretic and reversible N2 uptakes, respectively, while NOTT-206a and NOTT-200a provide a strong kinetic trap showing adsorption/desorption hysteresis with H2. Single crystal X-ray analysis confirms that the Li+ ions are either tetrahedrally (in NOTT-201-solv and NOTT-209-solv) or octahedrally (in NOTT-207-solv) coordinated by carboxylate oxygen atoms and/or water molecules. This is supported by 7Li solid-state NMR spectroscopy. NOTT-209a, compared with NOTT-208a, shows a 31% enhancement in H2 storage capacity coupled to a 38% increase in the isosteric heat of adsorption to 12 kJ/mol at zero coverage. Thus, by modulating the pore environment via postsynthetic cation exchange, the gas adsorption properties of the resultant MOF can be fine-tuned. This affords a methodology for the development of high capacity storage materials that may operate at more ambient temperatures.
doi_str_mv 10.1021/ic200967b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901304348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901304348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-c7b22ca3745b0a1b323725d86a158999bba21eb145fd74a84cb2a5b213fccde03</originalsourceid><addsrcrecordid>eNpt0MtOGzEUBmCrApWQdtEXQN6gikWKL3NlF6UhIIFg0UrdjY49ZxJDxg62U5o3YMOmj9gnqSHAipUv-s4vnZ-QL5x940zwY6MFY3VRqg9kwHPBRjlnv3bIgLF050VR75H9EG5YQjIrPpI9was6Z0IMyOO180jvTVzQGUQ8oVO7AKuxRxup62hcID0PLkT0RtMzhOffcRucX0Xj7NPru1lsWu_maOlvA_Q66bCxaTKmkQk8s-kfnXLnSI2llxhh-e_h75Wfg03k1EOP987fhk9kt4NlwM8v55D8PJ3-mJyNLq5m55PxxQgkz-JIl0oIDbLMcsWAKylkKfK2KoDnVV3XSoHgqHiWd22ZQZVpJSBXgstO6xaZHJKv29yVd3drDLHpTdC4XIJFtw5NzbhkmcyqJI-2UnsXgseuWXnTg980nDVP5Tdv5Sd78JK6Vj22b_K17QQOtwB0aG7c2tu05DtB_wG5Yo3Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901304348</pqid></control><display><type>article</type><title>Pore with Gate: Enhancement of the Isosteric Heat of Adsorption of Dihydrogen via Postsynthetic Cation Exchange in Metal−Organic Frameworks</title><source>American Chemical Society</source><creator>Yang, Sihai ; Martin, Gregory S. B ; Titman, Jeremy J ; Blake, Alexander J ; Allan, David R ; Champness, Neil R ; Schröder, Martin</creator><creatorcontrib>Yang, Sihai ; Martin, Gregory S. B ; Titman, Jeremy J ; Blake, Alexander J ; Allan, David R ; Champness, Neil R ; Schröder, Martin</creatorcontrib><description>Three isostructural anionic frameworks {[(Hdma)(H3O)][In2(L1)2]·4DMF·5H2O}∞ (NOTT-206-solv), {[H2ppz][In2(L2)2]·3.5DMF·5H2O}∞ (NOTT-200-solv), and {[H2ppz][In2(L3)2]·4DMF·5.5H2O}∞ (NOTT-208-solv) (dma = dimethylamine; ppz = piperazine) each featuring organic countercations that selectively block the channels and act as pore gates have been prepared. The organic cations within the as-synthesized frameworks can be replaced by Li+ ions to yield the corresponding Li+-containing frameworks {Li1.2(H3O)0.8[In2(L1)2]·14H2O}∞ (NOTT-207-solv), {Li1.5(H3O)0.5[In2(L2)2]·11H2O}∞ (NOTT-201-solv), and {Li1.4(H3O)0.6[In2(L3)2]·4acetone·11H2O}∞ (NOTT-209-solv) in which the pores are now unblocked. The desolvated framework materials NOTT-200a, NOTT-206a, and NOTT-208a display nonporous, hysteretic and reversible N2 uptakes, respectively, while NOTT-206a and NOTT-200a provide a strong kinetic trap showing adsorption/desorption hysteresis with H2. Single crystal X-ray analysis confirms that the Li+ ions are either tetrahedrally (in NOTT-201-solv and NOTT-209-solv) or octahedrally (in NOTT-207-solv) coordinated by carboxylate oxygen atoms and/or water molecules. This is supported by 7Li solid-state NMR spectroscopy. NOTT-209a, compared with NOTT-208a, shows a 31% enhancement in H2 storage capacity coupled to a 38% increase in the isosteric heat of adsorption to 12 kJ/mol at zero coverage. Thus, by modulating the pore environment via postsynthetic cation exchange, the gas adsorption properties of the resultant MOF can be fine-tuned. This affords a methodology for the development of high capacity storage materials that may operate at more ambient temperatures.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic200967b</identifier><identifier>PMID: 21895022</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2011-10, Vol.50 (19), p.9374-9384</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-c7b22ca3745b0a1b323725d86a158999bba21eb145fd74a84cb2a5b213fccde03</citedby><cites>FETCH-LOGICAL-a314t-c7b22ca3745b0a1b323725d86a158999bba21eb145fd74a84cb2a5b213fccde03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic200967b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic200967b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21895022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Sihai</creatorcontrib><creatorcontrib>Martin, Gregory S. B</creatorcontrib><creatorcontrib>Titman, Jeremy J</creatorcontrib><creatorcontrib>Blake, Alexander J</creatorcontrib><creatorcontrib>Allan, David R</creatorcontrib><creatorcontrib>Champness, Neil R</creatorcontrib><creatorcontrib>Schröder, Martin</creatorcontrib><title>Pore with Gate: Enhancement of the Isosteric Heat of Adsorption of Dihydrogen via Postsynthetic Cation Exchange in Metal−Organic Frameworks</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Three isostructural anionic frameworks {[(Hdma)(H3O)][In2(L1)2]·4DMF·5H2O}∞ (NOTT-206-solv), {[H2ppz][In2(L2)2]·3.5DMF·5H2O}∞ (NOTT-200-solv), and {[H2ppz][In2(L3)2]·4DMF·5.5H2O}∞ (NOTT-208-solv) (dma = dimethylamine; ppz = piperazine) each featuring organic countercations that selectively block the channels and act as pore gates have been prepared. The organic cations within the as-synthesized frameworks can be replaced by Li+ ions to yield the corresponding Li+-containing frameworks {Li1.2(H3O)0.8[In2(L1)2]·14H2O}∞ (NOTT-207-solv), {Li1.5(H3O)0.5[In2(L2)2]·11H2O}∞ (NOTT-201-solv), and {Li1.4(H3O)0.6[In2(L3)2]·4acetone·11H2O}∞ (NOTT-209-solv) in which the pores are now unblocked. The desolvated framework materials NOTT-200a, NOTT-206a, and NOTT-208a display nonporous, hysteretic and reversible N2 uptakes, respectively, while NOTT-206a and NOTT-200a provide a strong kinetic trap showing adsorption/desorption hysteresis with H2. Single crystal X-ray analysis confirms that the Li+ ions are either tetrahedrally (in NOTT-201-solv and NOTT-209-solv) or octahedrally (in NOTT-207-solv) coordinated by carboxylate oxygen atoms and/or water molecules. This is supported by 7Li solid-state NMR spectroscopy. NOTT-209a, compared with NOTT-208a, shows a 31% enhancement in H2 storage capacity coupled to a 38% increase in the isosteric heat of adsorption to 12 kJ/mol at zero coverage. Thus, by modulating the pore environment via postsynthetic cation exchange, the gas adsorption properties of the resultant MOF can be fine-tuned. This affords a methodology for the development of high capacity storage materials that may operate at more ambient temperatures.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpt0MtOGzEUBmCrApWQdtEXQN6gikWKL3NlF6UhIIFg0UrdjY49ZxJDxg62U5o3YMOmj9gnqSHAipUv-s4vnZ-QL5x940zwY6MFY3VRqg9kwHPBRjlnv3bIgLF050VR75H9EG5YQjIrPpI9was6Z0IMyOO180jvTVzQGUQ8oVO7AKuxRxup62hcID0PLkT0RtMzhOffcRucX0Xj7NPru1lsWu_maOlvA_Q66bCxaTKmkQk8s-kfnXLnSI2llxhh-e_h75Wfg03k1EOP987fhk9kt4NlwM8v55D8PJ3-mJyNLq5m55PxxQgkz-JIl0oIDbLMcsWAKylkKfK2KoDnVV3XSoHgqHiWd22ZQZVpJSBXgstO6xaZHJKv29yVd3drDLHpTdC4XIJFtw5NzbhkmcyqJI-2UnsXgseuWXnTg980nDVP5Tdv5Sd78JK6Vj22b_K17QQOtwB0aG7c2tu05DtB_wG5Yo3Z</recordid><startdate>20111003</startdate><enddate>20111003</enddate><creator>Yang, Sihai</creator><creator>Martin, Gregory S. B</creator><creator>Titman, Jeremy J</creator><creator>Blake, Alexander J</creator><creator>Allan, David R</creator><creator>Champness, Neil R</creator><creator>Schröder, Martin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111003</creationdate><title>Pore with Gate: Enhancement of the Isosteric Heat of Adsorption of Dihydrogen via Postsynthetic Cation Exchange in Metal−Organic Frameworks</title><author>Yang, Sihai ; Martin, Gregory S. B ; Titman, Jeremy J ; Blake, Alexander J ; Allan, David R ; Champness, Neil R ; Schröder, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-c7b22ca3745b0a1b323725d86a158999bba21eb145fd74a84cb2a5b213fccde03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Sihai</creatorcontrib><creatorcontrib>Martin, Gregory S. B</creatorcontrib><creatorcontrib>Titman, Jeremy J</creatorcontrib><creatorcontrib>Blake, Alexander J</creatorcontrib><creatorcontrib>Allan, David R</creatorcontrib><creatorcontrib>Champness, Neil R</creatorcontrib><creatorcontrib>Schröder, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Sihai</au><au>Martin, Gregory S. B</au><au>Titman, Jeremy J</au><au>Blake, Alexander J</au><au>Allan, David R</au><au>Champness, Neil R</au><au>Schröder, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore with Gate: Enhancement of the Isosteric Heat of Adsorption of Dihydrogen via Postsynthetic Cation Exchange in Metal−Organic Frameworks</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2011-10-03</date><risdate>2011</risdate><volume>50</volume><issue>19</issue><spage>9374</spage><epage>9384</epage><pages>9374-9384</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Three isostructural anionic frameworks {[(Hdma)(H3O)][In2(L1)2]·4DMF·5H2O}∞ (NOTT-206-solv), {[H2ppz][In2(L2)2]·3.5DMF·5H2O}∞ (NOTT-200-solv), and {[H2ppz][In2(L3)2]·4DMF·5.5H2O}∞ (NOTT-208-solv) (dma = dimethylamine; ppz = piperazine) each featuring organic countercations that selectively block the channels and act as pore gates have been prepared. The organic cations within the as-synthesized frameworks can be replaced by Li+ ions to yield the corresponding Li+-containing frameworks {Li1.2(H3O)0.8[In2(L1)2]·14H2O}∞ (NOTT-207-solv), {Li1.5(H3O)0.5[In2(L2)2]·11H2O}∞ (NOTT-201-solv), and {Li1.4(H3O)0.6[In2(L3)2]·4acetone·11H2O}∞ (NOTT-209-solv) in which the pores are now unblocked. The desolvated framework materials NOTT-200a, NOTT-206a, and NOTT-208a display nonporous, hysteretic and reversible N2 uptakes, respectively, while NOTT-206a and NOTT-200a provide a strong kinetic trap showing adsorption/desorption hysteresis with H2. Single crystal X-ray analysis confirms that the Li+ ions are either tetrahedrally (in NOTT-201-solv and NOTT-209-solv) or octahedrally (in NOTT-207-solv) coordinated by carboxylate oxygen atoms and/or water molecules. This is supported by 7Li solid-state NMR spectroscopy. NOTT-209a, compared with NOTT-208a, shows a 31% enhancement in H2 storage capacity coupled to a 38% increase in the isosteric heat of adsorption to 12 kJ/mol at zero coverage. Thus, by modulating the pore environment via postsynthetic cation exchange, the gas adsorption properties of the resultant MOF can be fine-tuned. This affords a methodology for the development of high capacity storage materials that may operate at more ambient temperatures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21895022</pmid><doi>10.1021/ic200967b</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2011-10, Vol.50 (19), p.9374-9384
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_901304348
source American Chemical Society
title Pore with Gate: Enhancement of the Isosteric Heat of Adsorption of Dihydrogen via Postsynthetic Cation Exchange in Metal−Organic Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20with%20Gate:%20Enhancement%20of%20the%20Isosteric%20Heat%20of%20Adsorption%20of%20Dihydrogen%20via%20Postsynthetic%20Cation%20Exchange%20in%20Metal%E2%88%92Organic%20Frameworks&rft.jtitle=Inorganic%20chemistry&rft.au=Yang,%20Sihai&rft.date=2011-10-03&rft.volume=50&rft.issue=19&rft.spage=9374&rft.epage=9384&rft.pages=9374-9384&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic200967b&rft_dat=%3Cproquest_cross%3E901304348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901304348&rft_id=info:pmid/21895022&rfr_iscdi=true