Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization
Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic s...
Gespeichert in:
Veröffentlicht in: | Stem cells and development 2011-11, Vol.20 (11), p.1829-1845 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1845 |
---|---|
container_issue | 11 |
container_start_page | 1829 |
container_title | Stem cells and development |
container_volume | 20 |
creator | Rowland, James W. Lee, Jason J. Salewski, Ryan P. Eftekharpour, Eftekhar van der Kooy, Derek Fehlings, Michael G. |
description | Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic stem cells (ESCs) neural differentiation is elicited in the absence of any extrinsic signaling in minimal, serum-free culture conditions. The default mechanism can be used to derive clonal neurosphere-forming populations of neural stem cells that have been termed leukemia inhibitory factor-dependent primitive neural stem cells (pNSCs), which subsequently give rise to fibroblast growth factor 2-dependent definitive NSCs (dNSCs). Here we characterized the neural differentiation pattern of these two cell types in vitro and in vivo when transplanted into the dysmyelinated spinal cords of
shiverer
mice. We compared the differentiation pattern to that observed for neural stem/progenitor cells derived from the adult forebrain subependymal zone [adult neural precursor cells (aNPCs)]. dNSCs produced a differentiation pattern similar to that of aNPCs in vitro and in the
shiverer
model in vivo, where both cell types produced terminally differentiated oligodendrocytes that associated with host axons and expressed myelin basic protein. This is the first demonstration of the in vivo differentiation of NSCs, derived from ESCs through the default mechanism, into the oligodendrocyte lineage. We conclude that dNSCs derived through the default pathway of neural induction are a similar cell population to aNPCs and that the default mechanism is a promising approach to generate NSCs from pluripotent cell populations for use in cell therapy or other research applications. |
doi_str_mv | 10.1089/scd.2011.0214 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_901304141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A272616321</galeid><sourcerecordid>A272616321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e3e26a99e5aa2f6e5d09d5a8a491f6f7ab914d64b1e4fa141cba9f34f2388e463</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhSNERR-wZIsssWCVi19xEnbV7YNKbVlA2VqTZNxrlNjFdpCK-PE4pCCQkCov7Jn5znhGpyheMrphtGnfxn7YcMrYhnImnxQHrKrqsqmEfLq8ZV0K3tT7xWGMXyjlijfyWbHPmaKy5dVB8eMcHQZI1jviDbnGOcBIPiacyBbHMRIT_EROpy7ce2f7vys30bpbknZITtDAPCZyhf0OnI3TO3LhyGebgifghjX45sl2BwH6hMF-__Xj82LPwBjxxcN9VNycnX7avi8vP5xfbI8vy15SkUoUyBW0LVYA3CisBtoOFTQgW2aUqaFrmRyU7BhKA0yyvoPWCGm4aBqUShwVb9a-d8F_nTEmPdnY5yXAoZ-jbikTVGZhJl-v5C2MqK0zPuWJF1of85orpgRfqM1_qHwGnGzvHRqb8_8IylXQBx9jQKPvgp0g3GtG9WKjzjbqxUa92Jj5Vw8Dz92Ewx_6t28ZECuwpMG50WKHIT3S9ie8WKio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901304141</pqid></control><display><type>article</type><title>Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Rowland, James W. ; Lee, Jason J. ; Salewski, Ryan P. ; Eftekharpour, Eftekhar ; van der Kooy, Derek ; Fehlings, Michael G.</creator><creatorcontrib>Rowland, James W. ; Lee, Jason J. ; Salewski, Ryan P. ; Eftekharpour, Eftekhar ; van der Kooy, Derek ; Fehlings, Michael G.</creatorcontrib><description>Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic stem cells (ESCs) neural differentiation is elicited in the absence of any extrinsic signaling in minimal, serum-free culture conditions. The default mechanism can be used to derive clonal neurosphere-forming populations of neural stem cells that have been termed leukemia inhibitory factor-dependent primitive neural stem cells (pNSCs), which subsequently give rise to fibroblast growth factor 2-dependent definitive NSCs (dNSCs). Here we characterized the neural differentiation pattern of these two cell types in vitro and in vivo when transplanted into the dysmyelinated spinal cords of
shiverer
mice. We compared the differentiation pattern to that observed for neural stem/progenitor cells derived from the adult forebrain subependymal zone [adult neural precursor cells (aNPCs)]. dNSCs produced a differentiation pattern similar to that of aNPCs in vitro and in the
shiverer
model in vivo, where both cell types produced terminally differentiated oligodendrocytes that associated with host axons and expressed myelin basic protein. This is the first demonstration of the in vivo differentiation of NSCs, derived from ESCs through the default mechanism, into the oligodendrocyte lineage. We conclude that dNSCs derived through the default pathway of neural induction are a similar cell population to aNPCs and that the default mechanism is a promising approach to generate NSCs from pluripotent cell populations for use in cell therapy or other research applications.</description><identifier>ISSN: 1547-3287</identifier><identifier>EISSN: 1557-8534</identifier><identifier>DOI: 10.1089/scd.2011.0214</identifier><identifier>PMID: 21604925</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Cell Count ; Cell differentiation ; Cell Differentiation - genetics ; Cell Line ; Cell Lineage ; Coculture Techniques ; Demyelinating Diseases - therapy ; Embryonic stem cells ; Embryonic Stem Cells - metabolism ; Embryonic Stem Cells - physiology ; Embryonic Stem Cells - transplantation ; Gene Expression Profiling ; Mice ; Mice, Knockout ; Microscopy, Fluorescence ; Myelin Basic Protein - genetics ; Myelin Basic Protein - metabolism ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neural Stem Cells - transplantation ; Neurons ; Original Research Reports ; Physiological aspects ; Spheroids, Cellular - cytology ; Spheroids, Cellular - metabolism ; Spheroids, Cellular - transplantation ; Spinal Cord - cytology</subject><ispartof>Stem cells and development, 2011-11, Vol.20 (11), p.1829-1845</ispartof><rights>2011, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e3e26a99e5aa2f6e5d09d5a8a491f6f7ab914d64b1e4fa141cba9f34f2388e463</citedby><cites>FETCH-LOGICAL-c403t-e3e26a99e5aa2f6e5d09d5a8a491f6f7ab914d64b1e4fa141cba9f34f2388e463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21604925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowland, James W.</creatorcontrib><creatorcontrib>Lee, Jason J.</creatorcontrib><creatorcontrib>Salewski, Ryan P.</creatorcontrib><creatorcontrib>Eftekharpour, Eftekhar</creatorcontrib><creatorcontrib>van der Kooy, Derek</creatorcontrib><creatorcontrib>Fehlings, Michael G.</creatorcontrib><title>Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization</title><title>Stem cells and development</title><addtitle>Stem Cells Dev</addtitle><description>Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic stem cells (ESCs) neural differentiation is elicited in the absence of any extrinsic signaling in minimal, serum-free culture conditions. The default mechanism can be used to derive clonal neurosphere-forming populations of neural stem cells that have been termed leukemia inhibitory factor-dependent primitive neural stem cells (pNSCs), which subsequently give rise to fibroblast growth factor 2-dependent definitive NSCs (dNSCs). Here we characterized the neural differentiation pattern of these two cell types in vitro and in vivo when transplanted into the dysmyelinated spinal cords of
shiverer
mice. We compared the differentiation pattern to that observed for neural stem/progenitor cells derived from the adult forebrain subependymal zone [adult neural precursor cells (aNPCs)]. dNSCs produced a differentiation pattern similar to that of aNPCs in vitro and in the
shiverer
model in vivo, where both cell types produced terminally differentiated oligodendrocytes that associated with host axons and expressed myelin basic protein. This is the first demonstration of the in vivo differentiation of NSCs, derived from ESCs through the default mechanism, into the oligodendrocyte lineage. We conclude that dNSCs derived through the default pathway of neural induction are a similar cell population to aNPCs and that the default mechanism is a promising approach to generate NSCs from pluripotent cell populations for use in cell therapy or other research applications.</description><subject>Animals</subject><subject>Cell Count</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>Cell Lineage</subject><subject>Coculture Techniques</subject><subject>Demyelinating Diseases - therapy</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Embryonic Stem Cells - transplantation</subject><subject>Gene Expression Profiling</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Fluorescence</subject><subject>Myelin Basic Protein - genetics</subject><subject>Myelin Basic Protein - metabolism</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - transplantation</subject><subject>Neurons</subject><subject>Original Research Reports</subject><subject>Physiological aspects</subject><subject>Spheroids, Cellular - cytology</subject><subject>Spheroids, Cellular - metabolism</subject><subject>Spheroids, Cellular - transplantation</subject><subject>Spinal Cord - cytology</subject><issn>1547-3287</issn><issn>1557-8534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1TAQhSNERR-wZIsssWCVi19xEnbV7YNKbVlA2VqTZNxrlNjFdpCK-PE4pCCQkCov7Jn5znhGpyheMrphtGnfxn7YcMrYhnImnxQHrKrqsqmEfLq8ZV0K3tT7xWGMXyjlijfyWbHPmaKy5dVB8eMcHQZI1jviDbnGOcBIPiacyBbHMRIT_EROpy7ce2f7vys30bpbknZITtDAPCZyhf0OnI3TO3LhyGebgifghjX45sl2BwH6hMF-__Xj82LPwBjxxcN9VNycnX7avi8vP5xfbI8vy15SkUoUyBW0LVYA3CisBtoOFTQgW2aUqaFrmRyU7BhKA0yyvoPWCGm4aBqUShwVb9a-d8F_nTEmPdnY5yXAoZ-jbikTVGZhJl-v5C2MqK0zPuWJF1of85orpgRfqM1_qHwGnGzvHRqb8_8IylXQBx9jQKPvgp0g3GtG9WKjzjbqxUa92Jj5Vw8Dz92Ewx_6t28ZECuwpMG50WKHIT3S9ie8WKio</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Rowland, James W.</creator><creator>Lee, Jason J.</creator><creator>Salewski, Ryan P.</creator><creator>Eftekharpour, Eftekhar</creator><creator>van der Kooy, Derek</creator><creator>Fehlings, Michael G.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization</title><author>Rowland, James W. ; Lee, Jason J. ; Salewski, Ryan P. ; Eftekharpour, Eftekhar ; van der Kooy, Derek ; Fehlings, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e3e26a99e5aa2f6e5d09d5a8a491f6f7ab914d64b1e4fa141cba9f34f2388e463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Cell Count</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>Cell Lineage</topic><topic>Coculture Techniques</topic><topic>Demyelinating Diseases - therapy</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Embryonic Stem Cells - transplantation</topic><topic>Gene Expression Profiling</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Fluorescence</topic><topic>Myelin Basic Protein - genetics</topic><topic>Myelin Basic Protein - metabolism</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - transplantation</topic><topic>Neurons</topic><topic>Original Research Reports</topic><topic>Physiological aspects</topic><topic>Spheroids, Cellular - cytology</topic><topic>Spheroids, Cellular - metabolism</topic><topic>Spheroids, Cellular - transplantation</topic><topic>Spinal Cord - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowland, James W.</creatorcontrib><creatorcontrib>Lee, Jason J.</creatorcontrib><creatorcontrib>Salewski, Ryan P.</creatorcontrib><creatorcontrib>Eftekharpour, Eftekhar</creatorcontrib><creatorcontrib>van der Kooy, Derek</creatorcontrib><creatorcontrib>Fehlings, Michael G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Stem cells and development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowland, James W.</au><au>Lee, Jason J.</au><au>Salewski, Ryan P.</au><au>Eftekharpour, Eftekhar</au><au>van der Kooy, Derek</au><au>Fehlings, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization</atitle><jtitle>Stem cells and development</jtitle><addtitle>Stem Cells Dev</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>20</volume><issue>11</issue><spage>1829</spage><epage>1845</epage><pages>1829-1845</pages><issn>1547-3287</issn><eissn>1557-8534</eissn><abstract>Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic stem cells (ESCs) neural differentiation is elicited in the absence of any extrinsic signaling in minimal, serum-free culture conditions. The default mechanism can be used to derive clonal neurosphere-forming populations of neural stem cells that have been termed leukemia inhibitory factor-dependent primitive neural stem cells (pNSCs), which subsequently give rise to fibroblast growth factor 2-dependent definitive NSCs (dNSCs). Here we characterized the neural differentiation pattern of these two cell types in vitro and in vivo when transplanted into the dysmyelinated spinal cords of
shiverer
mice. We compared the differentiation pattern to that observed for neural stem/progenitor cells derived from the adult forebrain subependymal zone [adult neural precursor cells (aNPCs)]. dNSCs produced a differentiation pattern similar to that of aNPCs in vitro and in the
shiverer
model in vivo, where both cell types produced terminally differentiated oligodendrocytes that associated with host axons and expressed myelin basic protein. This is the first demonstration of the in vivo differentiation of NSCs, derived from ESCs through the default mechanism, into the oligodendrocyte lineage. We conclude that dNSCs derived through the default pathway of neural induction are a similar cell population to aNPCs and that the default mechanism is a promising approach to generate NSCs from pluripotent cell populations for use in cell therapy or other research applications.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>21604925</pmid><doi>10.1089/scd.2011.0214</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-3287 |
ispartof | Stem cells and development, 2011-11, Vol.20 (11), p.1829-1845 |
issn | 1547-3287 1557-8534 |
language | eng |
recordid | cdi_proquest_miscellaneous_901304141 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Animals Cell Count Cell differentiation Cell Differentiation - genetics Cell Line Cell Lineage Coculture Techniques Demyelinating Diseases - therapy Embryonic stem cells Embryonic Stem Cells - metabolism Embryonic Stem Cells - physiology Embryonic Stem Cells - transplantation Gene Expression Profiling Mice Mice, Knockout Microscopy, Fluorescence Myelin Basic Protein - genetics Myelin Basic Protein - metabolism Neural Stem Cells - cytology Neural Stem Cells - metabolism Neural Stem Cells - transplantation Neurons Original Research Reports Physiological aspects Spheroids, Cellular - cytology Spheroids, Cellular - metabolism Spheroids, Cellular - transplantation Spinal Cord - cytology |
title | Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Neural%20Stem%20Cells%20from%20Embryonic%20Stem%20Cells%20Using%20the%20Default%20Mechanism:%20In%20Vitro%20and%20In%20Vivo%20Characterization&rft.jtitle=Stem%20cells%20and%20development&rft.au=Rowland,%20James%20W.&rft.date=2011-11-01&rft.volume=20&rft.issue=11&rft.spage=1829&rft.epage=1845&rft.pages=1829-1845&rft.issn=1547-3287&rft.eissn=1557-8534&rft_id=info:doi/10.1089/scd.2011.0214&rft_dat=%3Cgale_proqu%3EA272616321%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901304141&rft_id=info:pmid/21604925&rft_galeid=A272616321&rfr_iscdi=true |