Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization

Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells and development 2011-11, Vol.20 (11), p.1829-1845
Hauptverfasser: Rowland, James W., Lee, Jason J., Salewski, Ryan P., Eftekharpour, Eftekhar, van der Kooy, Derek, Fehlings, Michael G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1845
container_issue 11
container_start_page 1829
container_title Stem cells and development
container_volume 20
creator Rowland, James W.
Lee, Jason J.
Salewski, Ryan P.
Eftekharpour, Eftekhar
van der Kooy, Derek
Fehlings, Michael G.
description Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic stem cells (ESCs) neural differentiation is elicited in the absence of any extrinsic signaling in minimal, serum-free culture conditions. The default mechanism can be used to derive clonal neurosphere-forming populations of neural stem cells that have been termed leukemia inhibitory factor-dependent primitive neural stem cells (pNSCs), which subsequently give rise to fibroblast growth factor 2-dependent definitive NSCs (dNSCs). Here we characterized the neural differentiation pattern of these two cell types in vitro and in vivo when transplanted into the dysmyelinated spinal cords of shiverer mice. We compared the differentiation pattern to that observed for neural stem/progenitor cells derived from the adult forebrain subependymal zone [adult neural precursor cells (aNPCs)]. dNSCs produced a differentiation pattern similar to that of aNPCs in vitro and in the shiverer model in vivo, where both cell types produced terminally differentiated oligodendrocytes that associated with host axons and expressed myelin basic protein. This is the first demonstration of the in vivo differentiation of NSCs, derived from ESCs through the default mechanism, into the oligodendrocyte lineage. We conclude that dNSCs derived through the default pathway of neural induction are a similar cell population to aNPCs and that the default mechanism is a promising approach to generate NSCs from pluripotent cell populations for use in cell therapy or other research applications.
doi_str_mv 10.1089/scd.2011.0214
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_901304141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A272616321</galeid><sourcerecordid>A272616321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e3e26a99e5aa2f6e5d09d5a8a491f6f7ab914d64b1e4fa141cba9f34f2388e463</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhSNERR-wZIsssWCVi19xEnbV7YNKbVlA2VqTZNxrlNjFdpCK-PE4pCCQkCov7Jn5znhGpyheMrphtGnfxn7YcMrYhnImnxQHrKrqsqmEfLq8ZV0K3tT7xWGMXyjlijfyWbHPmaKy5dVB8eMcHQZI1jviDbnGOcBIPiacyBbHMRIT_EROpy7ce2f7vys30bpbknZITtDAPCZyhf0OnI3TO3LhyGebgifghjX45sl2BwH6hMF-__Xj82LPwBjxxcN9VNycnX7avi8vP5xfbI8vy15SkUoUyBW0LVYA3CisBtoOFTQgW2aUqaFrmRyU7BhKA0yyvoPWCGm4aBqUShwVb9a-d8F_nTEmPdnY5yXAoZ-jbikTVGZhJl-v5C2MqK0zPuWJF1of85orpgRfqM1_qHwGnGzvHRqb8_8IylXQBx9jQKPvgp0g3GtG9WKjzjbqxUa92Jj5Vw8Dz92Ewx_6t28ZECuwpMG50WKHIT3S9ie8WKio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901304141</pqid></control><display><type>article</type><title>Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Rowland, James W. ; Lee, Jason J. ; Salewski, Ryan P. ; Eftekharpour, Eftekhar ; van der Kooy, Derek ; Fehlings, Michael G.</creator><creatorcontrib>Rowland, James W. ; Lee, Jason J. ; Salewski, Ryan P. ; Eftekharpour, Eftekhar ; van der Kooy, Derek ; Fehlings, Michael G.</creatorcontrib><description>Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic stem cells (ESCs) neural differentiation is elicited in the absence of any extrinsic signaling in minimal, serum-free culture conditions. The default mechanism can be used to derive clonal neurosphere-forming populations of neural stem cells that have been termed leukemia inhibitory factor-dependent primitive neural stem cells (pNSCs), which subsequently give rise to fibroblast growth factor 2-dependent definitive NSCs (dNSCs). Here we characterized the neural differentiation pattern of these two cell types in vitro and in vivo when transplanted into the dysmyelinated spinal cords of shiverer mice. We compared the differentiation pattern to that observed for neural stem/progenitor cells derived from the adult forebrain subependymal zone [adult neural precursor cells (aNPCs)]. dNSCs produced a differentiation pattern similar to that of aNPCs in vitro and in the shiverer model in vivo, where both cell types produced terminally differentiated oligodendrocytes that associated with host axons and expressed myelin basic protein. This is the first demonstration of the in vivo differentiation of NSCs, derived from ESCs through the default mechanism, into the oligodendrocyte lineage. We conclude that dNSCs derived through the default pathway of neural induction are a similar cell population to aNPCs and that the default mechanism is a promising approach to generate NSCs from pluripotent cell populations for use in cell therapy or other research applications.</description><identifier>ISSN: 1547-3287</identifier><identifier>EISSN: 1557-8534</identifier><identifier>DOI: 10.1089/scd.2011.0214</identifier><identifier>PMID: 21604925</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Cell Count ; Cell differentiation ; Cell Differentiation - genetics ; Cell Line ; Cell Lineage ; Coculture Techniques ; Demyelinating Diseases - therapy ; Embryonic stem cells ; Embryonic Stem Cells - metabolism ; Embryonic Stem Cells - physiology ; Embryonic Stem Cells - transplantation ; Gene Expression Profiling ; Mice ; Mice, Knockout ; Microscopy, Fluorescence ; Myelin Basic Protein - genetics ; Myelin Basic Protein - metabolism ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neural Stem Cells - transplantation ; Neurons ; Original Research Reports ; Physiological aspects ; Spheroids, Cellular - cytology ; Spheroids, Cellular - metabolism ; Spheroids, Cellular - transplantation ; Spinal Cord - cytology</subject><ispartof>Stem cells and development, 2011-11, Vol.20 (11), p.1829-1845</ispartof><rights>2011, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e3e26a99e5aa2f6e5d09d5a8a491f6f7ab914d64b1e4fa141cba9f34f2388e463</citedby><cites>FETCH-LOGICAL-c403t-e3e26a99e5aa2f6e5d09d5a8a491f6f7ab914d64b1e4fa141cba9f34f2388e463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21604925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowland, James W.</creatorcontrib><creatorcontrib>Lee, Jason J.</creatorcontrib><creatorcontrib>Salewski, Ryan P.</creatorcontrib><creatorcontrib>Eftekharpour, Eftekhar</creatorcontrib><creatorcontrib>van der Kooy, Derek</creatorcontrib><creatorcontrib>Fehlings, Michael G.</creatorcontrib><title>Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization</title><title>Stem cells and development</title><addtitle>Stem Cells Dev</addtitle><description>Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic stem cells (ESCs) neural differentiation is elicited in the absence of any extrinsic signaling in minimal, serum-free culture conditions. The default mechanism can be used to derive clonal neurosphere-forming populations of neural stem cells that have been termed leukemia inhibitory factor-dependent primitive neural stem cells (pNSCs), which subsequently give rise to fibroblast growth factor 2-dependent definitive NSCs (dNSCs). Here we characterized the neural differentiation pattern of these two cell types in vitro and in vivo when transplanted into the dysmyelinated spinal cords of shiverer mice. We compared the differentiation pattern to that observed for neural stem/progenitor cells derived from the adult forebrain subependymal zone [adult neural precursor cells (aNPCs)]. dNSCs produced a differentiation pattern similar to that of aNPCs in vitro and in the shiverer model in vivo, where both cell types produced terminally differentiated oligodendrocytes that associated with host axons and expressed myelin basic protein. This is the first demonstration of the in vivo differentiation of NSCs, derived from ESCs through the default mechanism, into the oligodendrocyte lineage. We conclude that dNSCs derived through the default pathway of neural induction are a similar cell population to aNPCs and that the default mechanism is a promising approach to generate NSCs from pluripotent cell populations for use in cell therapy or other research applications.</description><subject>Animals</subject><subject>Cell Count</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>Cell Lineage</subject><subject>Coculture Techniques</subject><subject>Demyelinating Diseases - therapy</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Embryonic Stem Cells - transplantation</subject><subject>Gene Expression Profiling</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Fluorescence</subject><subject>Myelin Basic Protein - genetics</subject><subject>Myelin Basic Protein - metabolism</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - transplantation</subject><subject>Neurons</subject><subject>Original Research Reports</subject><subject>Physiological aspects</subject><subject>Spheroids, Cellular - cytology</subject><subject>Spheroids, Cellular - metabolism</subject><subject>Spheroids, Cellular - transplantation</subject><subject>Spinal Cord - cytology</subject><issn>1547-3287</issn><issn>1557-8534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1TAQhSNERR-wZIsssWCVi19xEnbV7YNKbVlA2VqTZNxrlNjFdpCK-PE4pCCQkCov7Jn5znhGpyheMrphtGnfxn7YcMrYhnImnxQHrKrqsqmEfLq8ZV0K3tT7xWGMXyjlijfyWbHPmaKy5dVB8eMcHQZI1jviDbnGOcBIPiacyBbHMRIT_EROpy7ce2f7vys30bpbknZITtDAPCZyhf0OnI3TO3LhyGebgifghjX45sl2BwH6hMF-__Xj82LPwBjxxcN9VNycnX7avi8vP5xfbI8vy15SkUoUyBW0LVYA3CisBtoOFTQgW2aUqaFrmRyU7BhKA0yyvoPWCGm4aBqUShwVb9a-d8F_nTEmPdnY5yXAoZ-jbikTVGZhJl-v5C2MqK0zPuWJF1of85orpgRfqM1_qHwGnGzvHRqb8_8IylXQBx9jQKPvgp0g3GtG9WKjzjbqxUa92Jj5Vw8Dz92Ewx_6t28ZECuwpMG50WKHIT3S9ie8WKio</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Rowland, James W.</creator><creator>Lee, Jason J.</creator><creator>Salewski, Ryan P.</creator><creator>Eftekharpour, Eftekhar</creator><creator>van der Kooy, Derek</creator><creator>Fehlings, Michael G.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization</title><author>Rowland, James W. ; Lee, Jason J. ; Salewski, Ryan P. ; Eftekharpour, Eftekhar ; van der Kooy, Derek ; Fehlings, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e3e26a99e5aa2f6e5d09d5a8a491f6f7ab914d64b1e4fa141cba9f34f2388e463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Cell Count</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>Cell Lineage</topic><topic>Coculture Techniques</topic><topic>Demyelinating Diseases - therapy</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Embryonic Stem Cells - transplantation</topic><topic>Gene Expression Profiling</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Fluorescence</topic><topic>Myelin Basic Protein - genetics</topic><topic>Myelin Basic Protein - metabolism</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - transplantation</topic><topic>Neurons</topic><topic>Original Research Reports</topic><topic>Physiological aspects</topic><topic>Spheroids, Cellular - cytology</topic><topic>Spheroids, Cellular - metabolism</topic><topic>Spheroids, Cellular - transplantation</topic><topic>Spinal Cord - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowland, James W.</creatorcontrib><creatorcontrib>Lee, Jason J.</creatorcontrib><creatorcontrib>Salewski, Ryan P.</creatorcontrib><creatorcontrib>Eftekharpour, Eftekhar</creatorcontrib><creatorcontrib>van der Kooy, Derek</creatorcontrib><creatorcontrib>Fehlings, Michael G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Stem cells and development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowland, James W.</au><au>Lee, Jason J.</au><au>Salewski, Ryan P.</au><au>Eftekharpour, Eftekhar</au><au>van der Kooy, Derek</au><au>Fehlings, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization</atitle><jtitle>Stem cells and development</jtitle><addtitle>Stem Cells Dev</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>20</volume><issue>11</issue><spage>1829</spage><epage>1845</epage><pages>1829-1845</pages><issn>1547-3287</issn><eissn>1557-8534</eissn><abstract>Neural stem cell-based approaches to repair damaged white matter in the central nervous system have shown great promise; however, the optimal cell population to employ in these therapies remains undetermined. A default mechanism of neural induction may function during development, and in embryonic stem cells (ESCs) neural differentiation is elicited in the absence of any extrinsic signaling in minimal, serum-free culture conditions. The default mechanism can be used to derive clonal neurosphere-forming populations of neural stem cells that have been termed leukemia inhibitory factor-dependent primitive neural stem cells (pNSCs), which subsequently give rise to fibroblast growth factor 2-dependent definitive NSCs (dNSCs). Here we characterized the neural differentiation pattern of these two cell types in vitro and in vivo when transplanted into the dysmyelinated spinal cords of shiverer mice. We compared the differentiation pattern to that observed for neural stem/progenitor cells derived from the adult forebrain subependymal zone [adult neural precursor cells (aNPCs)]. dNSCs produced a differentiation pattern similar to that of aNPCs in vitro and in the shiverer model in vivo, where both cell types produced terminally differentiated oligodendrocytes that associated with host axons and expressed myelin basic protein. This is the first demonstration of the in vivo differentiation of NSCs, derived from ESCs through the default mechanism, into the oligodendrocyte lineage. We conclude that dNSCs derived through the default pathway of neural induction are a similar cell population to aNPCs and that the default mechanism is a promising approach to generate NSCs from pluripotent cell populations for use in cell therapy or other research applications.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>21604925</pmid><doi>10.1089/scd.2011.0214</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1547-3287
ispartof Stem cells and development, 2011-11, Vol.20 (11), p.1829-1845
issn 1547-3287
1557-8534
language eng
recordid cdi_proquest_miscellaneous_901304141
source MEDLINE; Alma/SFX Local Collection
subjects Animals
Cell Count
Cell differentiation
Cell Differentiation - genetics
Cell Line
Cell Lineage
Coculture Techniques
Demyelinating Diseases - therapy
Embryonic stem cells
Embryonic Stem Cells - metabolism
Embryonic Stem Cells - physiology
Embryonic Stem Cells - transplantation
Gene Expression Profiling
Mice
Mice, Knockout
Microscopy, Fluorescence
Myelin Basic Protein - genetics
Myelin Basic Protein - metabolism
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neural Stem Cells - transplantation
Neurons
Original Research Reports
Physiological aspects
Spheroids, Cellular - cytology
Spheroids, Cellular - metabolism
Spheroids, Cellular - transplantation
Spinal Cord - cytology
title Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Neural%20Stem%20Cells%20from%20Embryonic%20Stem%20Cells%20Using%20the%20Default%20Mechanism:%20In%20Vitro%20and%20In%20Vivo%20Characterization&rft.jtitle=Stem%20cells%20and%20development&rft.au=Rowland,%20James%20W.&rft.date=2011-11-01&rft.volume=20&rft.issue=11&rft.spage=1829&rft.epage=1845&rft.pages=1829-1845&rft.issn=1547-3287&rft.eissn=1557-8534&rft_id=info:doi/10.1089/scd.2011.0214&rft_dat=%3Cgale_proqu%3EA272616321%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901304141&rft_id=info:pmid/21604925&rft_galeid=A272616321&rfr_iscdi=true