Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia

Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2011-11, Vol.234 (5), p.945-958
Hauptverfasser: Ohno, Sho, Hosokawa, Munetaka, Kojima, Misa, Kitamura, Yoshikuni, Hoshino, Atsushi, Tatsuzawa, Fumi, Doi, Motoaki, Yazawa, Susumu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 5
container_start_page 945
container_title Planta
container_volume 234
creator Ohno, Sho
Hosokawa, Munetaka
Kojima, Misa
Kitamura, Yoshikuni
Hoshino, Atsushi
Tatsuzawa, Fumi
Doi, Motoaki
Yazawa, Susumu
description Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar 'Yuino' and the two seedling cultivars 'OriW1' and 'OriW2' borne from a red-white bicolor cultivar, 'Orihime', indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in 'Yuino' petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias.
doi_str_mv 10.1007/s00425-011-1456-2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_901303978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23884731</jstor_id><sourcerecordid>23884731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-b01a71d0a450be6d2f0037820cc9d0b3ad01f7f25b1119dabe59955965e7fa423</originalsourceid><addsrcrecordid>eNp9kduq1DAUhoMo7nH0AbxQgiB6U11Jm6a93Gw8wQYv1OuSpiszGTJNTVKG_Ri-sakdHfBiQyCnb305_IQ8Z_COAcj3EaDiogDGClaJuuAPyIZVJS84VM1DsgHIY2hLcUWexHgAyJtSPiZXnNVNk2cb8uubPc4uqRH9HOnkYypSUGPUwU7J-lE5usMRabQOR23HHfWGppOngzUGA46J6r1y2i_M3Zj2KuKfikgDxmxeSuxIpzkgPe1tQmqcP2GIy2raI_U6-cl5O9BB7Z1VT8kjo1zEZ-d-S358_PD95nNx-_XTl5vr20LX0KSiB6YkG0BVAnqsB27ya2XDQet2gL5UAzAjDRc9Y6wdVI-ibYVoa4HSqIqXW_Jm9U7B_5wxpu5oo0bn1r_oWmAllK1sMvn2XjJn0TS8FnyRvvoPPfg55F9cfJCbFJAhtkI6-BgDmm4K9qjCXTYtMtmtwXY52G4JtlvEL8_iuT_i8K_ib5IZeH0GVNTKmRyitvHCVRIqlp-0JXzlYt4adxguN7zv9Bdr0SEmHy7SsmkqWbLyN3Jxxms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900900750</pqid></control><display><type>article</type><title>Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Ohno, Sho ; Hosokawa, Munetaka ; Kojima, Misa ; Kitamura, Yoshikuni ; Hoshino, Atsushi ; Tatsuzawa, Fumi ; Doi, Motoaki ; Yazawa, Susumu</creator><creatorcontrib>Ohno, Sho ; Hosokawa, Munetaka ; Kojima, Misa ; Kitamura, Yoshikuni ; Hoshino, Atsushi ; Tatsuzawa, Fumi ; Doi, Motoaki ; Yazawa, Susumu</creatorcontrib><description>Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar 'Yuino' and the two seedling cultivars 'OriW1' and 'OriW2' borne from a red-white bicolor cultivar, 'Orihime', indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in 'Yuino' petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-011-1456-2</identifier><identifier>PMID: 21688014</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Acyltransferases - genetics ; Acyltransferases - metabolism ; Agriculture ; Anthocyanins - metabolism ; Biological and medical sciences ; Biomedical and Life Sciences ; Breeding ; Chalcone - metabolism ; Chalconoids ; Color ; Cultivars ; Dahlia ; Dahlia - classification ; Dahlia - enzymology ; Dahlia - genetics ; Dahlia - physiology ; Ecology ; Flavones ; Flavones - metabolism ; Flavonoids ; Flowers ; Flowers - metabolism ; Flowers - physiology ; Forestry ; Fundamental and applied biological sciences. Psychology ; Gene silencing ; Genes ; Genes, Plant ; Life Sciences ; Messenger RNA ; Naringenin-chalcone synthase ; Nucleotides ; Original Article ; Petals ; Phylogeny ; Pigmentation ; Pigments ; Plant Sciences ; Plants ; Polymerase chain reaction ; Polyploidy ; Post-transcription ; RNA ; RNA Interference ; RNA, Messenger - analysis ; RNA, Plant - genetics ; RNA, Plant - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Seedlings ; Sequence Analysis, RNA ; siRNA ; Small interfering RNA</subject><ispartof>Planta, 2011-11, Vol.234 (5), p.945-958</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-b01a71d0a450be6d2f0037820cc9d0b3ad01f7f25b1119dabe59955965e7fa423</citedby><cites>FETCH-LOGICAL-c608t-b01a71d0a450be6d2f0037820cc9d0b3ad01f7f25b1119dabe59955965e7fa423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23884731$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23884731$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24704101$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21688014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohno, Sho</creatorcontrib><creatorcontrib>Hosokawa, Munetaka</creatorcontrib><creatorcontrib>Kojima, Misa</creatorcontrib><creatorcontrib>Kitamura, Yoshikuni</creatorcontrib><creatorcontrib>Hoshino, Atsushi</creatorcontrib><creatorcontrib>Tatsuzawa, Fumi</creatorcontrib><creatorcontrib>Doi, Motoaki</creatorcontrib><creatorcontrib>Yazawa, Susumu</creatorcontrib><title>Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar 'Yuino' and the two seedling cultivars 'OriW1' and 'OriW2' borne from a red-white bicolor cultivar, 'Orihime', indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in 'Yuino' petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias.</description><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Agriculture</subject><subject>Anthocyanins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Breeding</subject><subject>Chalcone - metabolism</subject><subject>Chalconoids</subject><subject>Color</subject><subject>Cultivars</subject><subject>Dahlia</subject><subject>Dahlia - classification</subject><subject>Dahlia - enzymology</subject><subject>Dahlia - genetics</subject><subject>Dahlia - physiology</subject><subject>Ecology</subject><subject>Flavones</subject><subject>Flavones - metabolism</subject><subject>Flavonoids</subject><subject>Flowers</subject><subject>Flowers - metabolism</subject><subject>Flowers - physiology</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Life Sciences</subject><subject>Messenger RNA</subject><subject>Naringenin-chalcone synthase</subject><subject>Nucleotides</subject><subject>Original Article</subject><subject>Petals</subject><subject>Phylogeny</subject><subject>Pigmentation</subject><subject>Pigments</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Polymerase chain reaction</subject><subject>Polyploidy</subject><subject>Post-transcription</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA, Messenger - analysis</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Seedlings</subject><subject>Sequence Analysis, RNA</subject><subject>siRNA</subject><subject>Small interfering RNA</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kduq1DAUhoMo7nH0AbxQgiB6U11Jm6a93Gw8wQYv1OuSpiszGTJNTVKG_Ri-sakdHfBiQyCnb305_IQ8Z_COAcj3EaDiogDGClaJuuAPyIZVJS84VM1DsgHIY2hLcUWexHgAyJtSPiZXnNVNk2cb8uubPc4uqRH9HOnkYypSUGPUwU7J-lE5usMRabQOR23HHfWGppOngzUGA46J6r1y2i_M3Zj2KuKfikgDxmxeSuxIpzkgPe1tQmqcP2GIy2raI_U6-cl5O9BB7Z1VT8kjo1zEZ-d-S358_PD95nNx-_XTl5vr20LX0KSiB6YkG0BVAnqsB27ya2XDQet2gL5UAzAjDRc9Y6wdVI-ibYVoa4HSqIqXW_Jm9U7B_5wxpu5oo0bn1r_oWmAllK1sMvn2XjJn0TS8FnyRvvoPPfg55F9cfJCbFJAhtkI6-BgDmm4K9qjCXTYtMtmtwXY52G4JtlvEL8_iuT_i8K_ib5IZeH0GVNTKmRyitvHCVRIqlp-0JXzlYt4adxguN7zv9Bdr0SEmHy7SsmkqWbLyN3Jxxms</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Ohno, Sho</creator><creator>Hosokawa, Munetaka</creator><creator>Kojima, Misa</creator><creator>Kitamura, Yoshikuni</creator><creator>Hoshino, Atsushi</creator><creator>Tatsuzawa, Fumi</creator><creator>Doi, Motoaki</creator><creator>Yazawa, Susumu</creator><general>Springer</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia</title><author>Ohno, Sho ; Hosokawa, Munetaka ; Kojima, Misa ; Kitamura, Yoshikuni ; Hoshino, Atsushi ; Tatsuzawa, Fumi ; Doi, Motoaki ; Yazawa, Susumu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-b01a71d0a450be6d2f0037820cc9d0b3ad01f7f25b1119dabe59955965e7fa423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Agriculture</topic><topic>Anthocyanins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Breeding</topic><topic>Chalcone - metabolism</topic><topic>Chalconoids</topic><topic>Color</topic><topic>Cultivars</topic><topic>Dahlia</topic><topic>Dahlia - classification</topic><topic>Dahlia - enzymology</topic><topic>Dahlia - genetics</topic><topic>Dahlia - physiology</topic><topic>Ecology</topic><topic>Flavones</topic><topic>Flavones - metabolism</topic><topic>Flavonoids</topic><topic>Flowers</topic><topic>Flowers - metabolism</topic><topic>Flowers - physiology</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Life Sciences</topic><topic>Messenger RNA</topic><topic>Naringenin-chalcone synthase</topic><topic>Nucleotides</topic><topic>Original Article</topic><topic>Petals</topic><topic>Phylogeny</topic><topic>Pigmentation</topic><topic>Pigments</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Polymerase chain reaction</topic><topic>Polyploidy</topic><topic>Post-transcription</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA, Messenger - analysis</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Seedlings</topic><topic>Sequence Analysis, RNA</topic><topic>siRNA</topic><topic>Small interfering RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohno, Sho</creatorcontrib><creatorcontrib>Hosokawa, Munetaka</creatorcontrib><creatorcontrib>Kojima, Misa</creatorcontrib><creatorcontrib>Kitamura, Yoshikuni</creatorcontrib><creatorcontrib>Hoshino, Atsushi</creatorcontrib><creatorcontrib>Tatsuzawa, Fumi</creatorcontrib><creatorcontrib>Doi, Motoaki</creatorcontrib><creatorcontrib>Yazawa, Susumu</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohno, Sho</au><au>Hosokawa, Munetaka</au><au>Kojima, Misa</au><au>Kitamura, Yoshikuni</au><au>Hoshino, Atsushi</au><au>Tatsuzawa, Fumi</au><au>Doi, Motoaki</au><au>Yazawa, Susumu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>234</volume><issue>5</issue><spage>945</spage><epage>958</epage><pages>945-958</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar 'Yuino' and the two seedling cultivars 'OriW1' and 'OriW2' borne from a red-white bicolor cultivar, 'Orihime', indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in 'Yuino' petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>21688014</pmid><doi>10.1007/s00425-011-1456-2</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2011-11, Vol.234 (5), p.945-958
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_901303978
source MEDLINE; SpringerLink Journals; JSTOR Archive Collection A-Z Listing
subjects Acyltransferases - genetics
Acyltransferases - metabolism
Agriculture
Anthocyanins - metabolism
Biological and medical sciences
Biomedical and Life Sciences
Breeding
Chalcone - metabolism
Chalconoids
Color
Cultivars
Dahlia
Dahlia - classification
Dahlia - enzymology
Dahlia - genetics
Dahlia - physiology
Ecology
Flavones
Flavones - metabolism
Flavonoids
Flowers
Flowers - metabolism
Flowers - physiology
Forestry
Fundamental and applied biological sciences. Psychology
Gene silencing
Genes
Genes, Plant
Life Sciences
Messenger RNA
Naringenin-chalcone synthase
Nucleotides
Original Article
Petals
Phylogeny
Pigmentation
Pigments
Plant Sciences
Plants
Polymerase chain reaction
Polyploidy
Post-transcription
RNA
RNA Interference
RNA, Messenger - analysis
RNA, Plant - genetics
RNA, Plant - metabolism
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Seedlings
Sequence Analysis, RNA
siRNA
Small interfering RNA
title Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20post-transcriptional%20gene%20silencing%20of%20two%20different%20chalcone%20synthase%20genes%20resulting%20in%20pure%20white%20flowers%20in%20the%20octoploid%20dahlia&rft.jtitle=Planta&rft.au=Ohno,%20Sho&rft.date=2011-11-01&rft.volume=234&rft.issue=5&rft.spage=945&rft.epage=958&rft.pages=945-958&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-011-1456-2&rft_dat=%3Cjstor_proqu%3E23884731%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900900750&rft_id=info:pmid/21688014&rft_jstor_id=23884731&rfr_iscdi=true