The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis

A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2011-11, Vol.234 (5), p.933-943
Hauptverfasser: Thakare, Dhiraj, Kumudini, Saratha, Dinkins, Randy D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 943
container_issue 5
container_start_page 933
container_title Planta
container_volume 234
creator Thakare, Dhiraj
Kumudini, Saratha
Dinkins, Randy D.
description A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression.
doi_str_mv 10.1007/s00425-011-1450-8
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_901303976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23884730</jstor_id><sourcerecordid>23884730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-dd392386bf1d0651589100464a8fbedf425c8ee02d15efb2590730051b837c3f3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1ERZfCD-AAspAQvQTGsZM4x6pqAalSL9tz5CTjNovXDp5E257463iVhZU4VLJke_zNs_0eY-8EfBEA1VcCUHmRgRCZUAVk-gVbCSXzLAelX7IVQFpDLYtT9ppoA5AOq-oVO81FqUWRlyv2e_2A3DiHDombiU9peyW4C91MfNiOpltq-DhGJBqC56OZJoyeB8unXeAUnlo0nl-vMzf8RH6PPknRQ9h5PgU--H7ukFsXdhgHf58K_CKadujDSAO9YSfWOMK3h_mM3V1frS-_Zze3335cXtxkXVHWU9b3ss6lLlsreigLUeg6OaBKZbRtsbfJhk4jQt6LAm2bFzVUEqAQrZZVJ608Y58X3TGGXzPS1GwH6tA54zHM1NQgJMi6KhN5_iwpINcgqlrUCf34H7oJc_TpH0kP0qiUTJBYoC4Gooi2GeOwNfEpKTX7GJslxibF2OxjbHTq-XAQntst9v86_uaWgE8HwFBnnI3GdwMdOVWBStqJyxeOxr35GI8vfO7290vThqYQj6JSa5VclX8A54m89g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900900743</pqid></control><display><type>article</type><title>The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Thakare, Dhiraj ; Kumudini, Saratha ; Dinkins, Randy D.</creator><creatorcontrib>Thakare, Dhiraj ; Kumudini, Saratha ; Dinkins, Randy D.</creatorcontrib><description>A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-011-1450-8</identifier><identifier>PMID: 21681526</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Adaptations ; Agriculture ; Alleles ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation ; Biomedical and Life Sciences ; Ecology ; Flowering ; Flowers - genetics ; Flowers - metabolism ; Flowers - physiology ; Forestry ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant ; Genetic Complementation Test ; Genetic Loci ; Genomes ; Genotype ; Glycine max ; Glycine max - genetics ; Glycine max - physiology ; Leaves ; Life Sciences ; Original Article ; Phosphatidylethanolamine Binding Protein - genetics ; Phosphatidylethanolamine Binding Protein - metabolism ; Photoperiod ; Plant Leaves - physiology ; Plant physiology and development ; Plant Sciences ; Plants ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - physiology ; Polymerase chain reaction ; Rice ; Soybean Proteins - genetics ; Soybean Proteins - metabolism ; Soybeans ; Time Factors ; Transformation, Genetic ; Vegetative and sexual reproduction, floral biology, fructification</subject><ispartof>Planta, 2011-11, Vol.234 (5), p.933-943</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag (outside the USA) 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-dd392386bf1d0651589100464a8fbedf425c8ee02d15efb2590730051b837c3f3</citedby><cites>FETCH-LOGICAL-c569t-dd392386bf1d0651589100464a8fbedf425c8ee02d15efb2590730051b837c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23884730$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23884730$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24704100$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21681526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thakare, Dhiraj</creatorcontrib><creatorcontrib>Kumudini, Saratha</creatorcontrib><creatorcontrib>Dinkins, Randy D.</creatorcontrib><title>The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression.</description><subject>Adaptations</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</subject><subject>Biomedical and Life Sciences</subject><subject>Ecology</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Flowers - metabolism</subject><subject>Flowers - physiology</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic Complementation Test</subject><subject>Genetic Loci</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Glycine max</subject><subject>Glycine max - genetics</subject><subject>Glycine max - physiology</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phosphatidylethanolamine Binding Protein - genetics</subject><subject>Phosphatidylethanolamine Binding Protein - metabolism</subject><subject>Photoperiod</subject><subject>Plant Leaves - physiology</subject><subject>Plant physiology and development</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - physiology</subject><subject>Polymerase chain reaction</subject><subject>Rice</subject><subject>Soybean Proteins - genetics</subject><subject>Soybean Proteins - metabolism</subject><subject>Soybeans</subject><subject>Time Factors</subject><subject>Transformation, Genetic</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFv1DAQhS1ERZfCD-AAspAQvQTGsZM4x6pqAalSL9tz5CTjNovXDp5E257463iVhZU4VLJke_zNs_0eY-8EfBEA1VcCUHmRgRCZUAVk-gVbCSXzLAelX7IVQFpDLYtT9ppoA5AOq-oVO81FqUWRlyv2e_2A3DiHDombiU9peyW4C91MfNiOpltq-DhGJBqC56OZJoyeB8unXeAUnlo0nl-vMzf8RH6PPknRQ9h5PgU--H7ukFsXdhgHf58K_CKadujDSAO9YSfWOMK3h_mM3V1frS-_Zze3335cXtxkXVHWU9b3ss6lLlsreigLUeg6OaBKZbRtsbfJhk4jQt6LAm2bFzVUEqAQrZZVJ608Y58X3TGGXzPS1GwH6tA54zHM1NQgJMi6KhN5_iwpINcgqlrUCf34H7oJc_TpH0kP0qiUTJBYoC4Gooi2GeOwNfEpKTX7GJslxibF2OxjbHTq-XAQntst9v86_uaWgE8HwFBnnI3GdwMdOVWBStqJyxeOxr35GI8vfO7290vThqYQj6JSa5VclX8A54m89g</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Thakare, Dhiraj</creator><creator>Kumudini, Saratha</creator><creator>Dinkins, Randy D.</creator><general>Springer</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis</title><author>Thakare, Dhiraj ; Kumudini, Saratha ; Dinkins, Randy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-dd392386bf1d0651589100464a8fbedf425c8ee02d15efb2590730051b837c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptations</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</topic><topic>Biomedical and Life Sciences</topic><topic>Ecology</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Flowers - metabolism</topic><topic>Flowers - physiology</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic Complementation Test</topic><topic>Genetic Loci</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Glycine max</topic><topic>Glycine max - genetics</topic><topic>Glycine max - physiology</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phosphatidylethanolamine Binding Protein - genetics</topic><topic>Phosphatidylethanolamine Binding Protein - metabolism</topic><topic>Photoperiod</topic><topic>Plant Leaves - physiology</topic><topic>Plant physiology and development</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - physiology</topic><topic>Polymerase chain reaction</topic><topic>Rice</topic><topic>Soybean Proteins - genetics</topic><topic>Soybean Proteins - metabolism</topic><topic>Soybeans</topic><topic>Time Factors</topic><topic>Transformation, Genetic</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thakare, Dhiraj</creatorcontrib><creatorcontrib>Kumudini, Saratha</creatorcontrib><creatorcontrib>Dinkins, Randy D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thakare, Dhiraj</au><au>Kumudini, Saratha</au><au>Dinkins, Randy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>234</volume><issue>5</issue><spage>933</spage><epage>943</epage><pages>933-943</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>21681526</pmid><doi>10.1007/s00425-011-1450-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2011-11, Vol.234 (5), p.933-943
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_901303976
source MEDLINE; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Adaptations
Agriculture
Alleles
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biological and medical sciences
Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation
Biomedical and Life Sciences
Ecology
Flowering
Flowers - genetics
Flowers - metabolism
Flowers - physiology
Forestry
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Genes
Genes, Plant
Genetic Complementation Test
Genetic Loci
Genomes
Genotype
Glycine max
Glycine max - genetics
Glycine max - physiology
Leaves
Life Sciences
Original Article
Phosphatidylethanolamine Binding Protein - genetics
Phosphatidylethanolamine Binding Protein - metabolism
Photoperiod
Plant Leaves - physiology
Plant physiology and development
Plant Sciences
Plants
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Plants, Genetically Modified - physiology
Polymerase chain reaction
Rice
Soybean Proteins - genetics
Soybean Proteins - metabolism
Soybeans
Time Factors
Transformation, Genetic
Vegetative and sexual reproduction, floral biology, fructification
title The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20alleles%20at%20the%20E1%20locus%20impact%20the%20expression%20pattern%20of%20two%20soybean%20FT-like%20genes%20shown%20to%20induce%20flowering%20in%20Arabidopsis&rft.jtitle=Planta&rft.au=Thakare,%20Dhiraj&rft.date=2011-11-01&rft.volume=234&rft.issue=5&rft.spage=933&rft.epage=943&rft.pages=933-943&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-011-1450-8&rft_dat=%3Cjstor_proqu%3E23884730%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900900743&rft_id=info:pmid/21681526&rft_jstor_id=23884730&rfr_iscdi=true