The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis
A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max...
Gespeichert in:
Veröffentlicht in: | Planta 2011-11, Vol.234 (5), p.933-943 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 943 |
---|---|
container_issue | 5 |
container_start_page | 933 |
container_title | Planta |
container_volume | 234 |
creator | Thakare, Dhiraj Kumudini, Saratha Dinkins, Randy D. |
description | A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression. |
doi_str_mv | 10.1007/s00425-011-1450-8 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_901303976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23884730</jstor_id><sourcerecordid>23884730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-dd392386bf1d0651589100464a8fbedf425c8ee02d15efb2590730051b837c3f3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1ERZfCD-AAspAQvQTGsZM4x6pqAalSL9tz5CTjNovXDp5E257463iVhZU4VLJke_zNs_0eY-8EfBEA1VcCUHmRgRCZUAVk-gVbCSXzLAelX7IVQFpDLYtT9ppoA5AOq-oVO81FqUWRlyv2e_2A3DiHDombiU9peyW4C91MfNiOpltq-DhGJBqC56OZJoyeB8unXeAUnlo0nl-vMzf8RH6PPknRQ9h5PgU--H7ukFsXdhgHf58K_CKadujDSAO9YSfWOMK3h_mM3V1frS-_Zze3335cXtxkXVHWU9b3ss6lLlsreigLUeg6OaBKZbRtsbfJhk4jQt6LAm2bFzVUEqAQrZZVJ608Y58X3TGGXzPS1GwH6tA54zHM1NQgJMi6KhN5_iwpINcgqlrUCf34H7oJc_TpH0kP0qiUTJBYoC4Gooi2GeOwNfEpKTX7GJslxibF2OxjbHTq-XAQntst9v86_uaWgE8HwFBnnI3GdwMdOVWBStqJyxeOxr35GI8vfO7290vThqYQj6JSa5VclX8A54m89g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900900743</pqid></control><display><type>article</type><title>The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Thakare, Dhiraj ; Kumudini, Saratha ; Dinkins, Randy D.</creator><creatorcontrib>Thakare, Dhiraj ; Kumudini, Saratha ; Dinkins, Randy D.</creatorcontrib><description>A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-011-1450-8</identifier><identifier>PMID: 21681526</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Adaptations ; Agriculture ; Alleles ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation ; Biomedical and Life Sciences ; Ecology ; Flowering ; Flowers - genetics ; Flowers - metabolism ; Flowers - physiology ; Forestry ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant ; Genetic Complementation Test ; Genetic Loci ; Genomes ; Genotype ; Glycine max ; Glycine max - genetics ; Glycine max - physiology ; Leaves ; Life Sciences ; Original Article ; Phosphatidylethanolamine Binding Protein - genetics ; Phosphatidylethanolamine Binding Protein - metabolism ; Photoperiod ; Plant Leaves - physiology ; Plant physiology and development ; Plant Sciences ; Plants ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - physiology ; Polymerase chain reaction ; Rice ; Soybean Proteins - genetics ; Soybean Proteins - metabolism ; Soybeans ; Time Factors ; Transformation, Genetic ; Vegetative and sexual reproduction, floral biology, fructification</subject><ispartof>Planta, 2011-11, Vol.234 (5), p.933-943</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag (outside the USA) 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-dd392386bf1d0651589100464a8fbedf425c8ee02d15efb2590730051b837c3f3</citedby><cites>FETCH-LOGICAL-c569t-dd392386bf1d0651589100464a8fbedf425c8ee02d15efb2590730051b837c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23884730$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23884730$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24704100$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21681526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thakare, Dhiraj</creatorcontrib><creatorcontrib>Kumudini, Saratha</creatorcontrib><creatorcontrib>Dinkins, Randy D.</creatorcontrib><title>The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression.</description><subject>Adaptations</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</subject><subject>Biomedical and Life Sciences</subject><subject>Ecology</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Flowers - metabolism</subject><subject>Flowers - physiology</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic Complementation Test</subject><subject>Genetic Loci</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Glycine max</subject><subject>Glycine max - genetics</subject><subject>Glycine max - physiology</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phosphatidylethanolamine Binding Protein - genetics</subject><subject>Phosphatidylethanolamine Binding Protein - metabolism</subject><subject>Photoperiod</subject><subject>Plant Leaves - physiology</subject><subject>Plant physiology and development</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - physiology</subject><subject>Polymerase chain reaction</subject><subject>Rice</subject><subject>Soybean Proteins - genetics</subject><subject>Soybean Proteins - metabolism</subject><subject>Soybeans</subject><subject>Time Factors</subject><subject>Transformation, Genetic</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFv1DAQhS1ERZfCD-AAspAQvQTGsZM4x6pqAalSL9tz5CTjNovXDp5E257463iVhZU4VLJke_zNs_0eY-8EfBEA1VcCUHmRgRCZUAVk-gVbCSXzLAelX7IVQFpDLYtT9ppoA5AOq-oVO81FqUWRlyv2e_2A3DiHDombiU9peyW4C91MfNiOpltq-DhGJBqC56OZJoyeB8unXeAUnlo0nl-vMzf8RH6PPknRQ9h5PgU--H7ukFsXdhgHf58K_CKadujDSAO9YSfWOMK3h_mM3V1frS-_Zze3335cXtxkXVHWU9b3ss6lLlsreigLUeg6OaBKZbRtsbfJhk4jQt6LAm2bFzVUEqAQrZZVJ608Y58X3TGGXzPS1GwH6tA54zHM1NQgJMi6KhN5_iwpINcgqlrUCf34H7oJc_TpH0kP0qiUTJBYoC4Gooi2GeOwNfEpKTX7GJslxibF2OxjbHTq-XAQntst9v86_uaWgE8HwFBnnI3GdwMdOVWBStqJyxeOxr35GI8vfO7290vThqYQj6JSa5VclX8A54m89g</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Thakare, Dhiraj</creator><creator>Kumudini, Saratha</creator><creator>Dinkins, Randy D.</creator><general>Springer</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis</title><author>Thakare, Dhiraj ; Kumudini, Saratha ; Dinkins, Randy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-dd392386bf1d0651589100464a8fbedf425c8ee02d15efb2590730051b837c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptations</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</topic><topic>Biomedical and Life Sciences</topic><topic>Ecology</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Flowers - metabolism</topic><topic>Flowers - physiology</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic Complementation Test</topic><topic>Genetic Loci</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Glycine max</topic><topic>Glycine max - genetics</topic><topic>Glycine max - physiology</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phosphatidylethanolamine Binding Protein - genetics</topic><topic>Phosphatidylethanolamine Binding Protein - metabolism</topic><topic>Photoperiod</topic><topic>Plant Leaves - physiology</topic><topic>Plant physiology and development</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - physiology</topic><topic>Polymerase chain reaction</topic><topic>Rice</topic><topic>Soybean Proteins - genetics</topic><topic>Soybean Proteins - metabolism</topic><topic>Soybeans</topic><topic>Time Factors</topic><topic>Transformation, Genetic</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thakare, Dhiraj</creatorcontrib><creatorcontrib>Kumudini, Saratha</creatorcontrib><creatorcontrib>Dinkins, Randy D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thakare, Dhiraj</au><au>Kumudini, Saratha</au><au>Dinkins, Randy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>234</volume><issue>5</issue><spage>933</spage><epage>943</epage><pages>933-943</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>21681526</pmid><doi>10.1007/s00425-011-1450-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2011-11, Vol.234 (5), p.933-943 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_901303976 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Adaptations Agriculture Alleles Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biological and medical sciences Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation Biomedical and Life Sciences Ecology Flowering Flowers - genetics Flowers - metabolism Flowers - physiology Forestry Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant Genes Genes, Plant Genetic Complementation Test Genetic Loci Genomes Genotype Glycine max Glycine max - genetics Glycine max - physiology Leaves Life Sciences Original Article Phosphatidylethanolamine Binding Protein - genetics Phosphatidylethanolamine Binding Protein - metabolism Photoperiod Plant Leaves - physiology Plant physiology and development Plant Sciences Plants Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Plants, Genetically Modified - physiology Polymerase chain reaction Rice Soybean Proteins - genetics Soybean Proteins - metabolism Soybeans Time Factors Transformation, Genetic Vegetative and sexual reproduction, floral biology, fructification |
title | The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20alleles%20at%20the%20E1%20locus%20impact%20the%20expression%20pattern%20of%20two%20soybean%20FT-like%20genes%20shown%20to%20induce%20flowering%20in%20Arabidopsis&rft.jtitle=Planta&rft.au=Thakare,%20Dhiraj&rft.date=2011-11-01&rft.volume=234&rft.issue=5&rft.spage=933&rft.epage=943&rft.pages=933-943&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-011-1450-8&rft_dat=%3Cjstor_proqu%3E23884730%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900900743&rft_id=info:pmid/21681526&rft_jstor_id=23884730&rfr_iscdi=true |