Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin
A unique 30‐residue cationic peptide oxyopinin 4a (Oxt 4a) was identified in the venom of the lynx spider Oxyopes takobius (Oxyopidae). Oxt 4a contains a single N‐terminally located disulfide bond, Cys4–Cys10, and is structurally different from any spider toxin studied so far. According to NMR findi...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2011-11, Vol.278 (22), p.4382-4393 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4393 |
---|---|
container_issue | 22 |
container_start_page | 4382 |
container_title | The FEBS journal |
container_volume | 278 |
creator | Dubovskii, Peter V. Vassilevski, Alexander A. Samsonova, Olga V. Egorova, Natalya S. Kozlov, Sergey A. Feofanov, Alexei V. Arseniev, Alexander S. Grishin, Eugene V. |
description | A unique 30‐residue cationic peptide oxyopinin 4a (Oxt 4a) was identified in the venom of the lynx spider Oxyopes takobius (Oxyopidae). Oxt 4a contains a single N‐terminally located disulfide bond, Cys4–Cys10, and is structurally different from any spider toxin studied so far. According to NMR findings, the peptide is disordered in water, but assumes a peculiar torpedo‐like structure in detergent micelles. It features a C‐terminal amphipathic α‐helical segment (body; residues 12–25) and an N‐terminal disulfide‐stabilized loop (head; residues 1–11), and has an unusually high density of positive charge in the head region. Synthetic Oxt 4a was produced and shown to possess strong and broad‐spectrum cytolytic and antimicrobial activity. cDNA cloning showed that the peptide is synthesized in the form of a conventional prepropeptide with an acidic prosequence. Unlike other arachnid toxins, Oxt 4a exhibits striking similarity with defense peptides from the skin of ranid frogs that contain the so‐called Rana‐box motif (a C‐terminal disulfide‐enclosed loop). Parallelism or convergence is apparent on several levels: the structure, function and biosynthesis of a lynx spider toxin are mirrored by those of Rana‐box peptides from frogs.
Database
The protein sequence of oxyopinin 4a (Oxt 4a) has been submitted to the UniProt Knowledgebase (UniProtKB) under the accession number P86350. The coordinates and chemical shifts of Oxt 4a in complex with dodecylphosphocholine micelles have been deposited in the Protein Data Bank and Biological Magnetic Resonance Bank under the accession codes 2L3I and 17194, respectively. The nucleotide sequence encoding Oxt 4a has been submitted to the EMBL Nucleotide Sequence Database under the accession number FN997582.
A unique 30‐residue cationic peptide oxyopinin 4a (Oxt 4a) from the venom of Oxyopes takobius spider contains a single disulfide bridge Cys4‐Cys10. Oxt 4a assumes a torpedo‐like structure in detergent micelles with an amphipathic α‐helical body (residues 12‐25) and a disulfide‐stabilized head loop (1‐11). Oxt 4a possesses cytolytic and antimicrobial activity and exhibits similarity with Rana‐box peptides from ranid frogs |
doi_str_mv | 10.1111/j.1742-4658.2011.08361.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901006874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496935231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4791-9e8514f807e12737788cba54f85d60a8cabbea9f33f5460338e10054beda381c3</originalsourceid><addsrcrecordid>eNqNkcFO3DAQhi0EYinlFZDFBS4b7NiOnQsSIGgrITjQSr1ZjjPpZpvEwU7K7tvX6S574IDqgz2yv_k11ocQpiShcV0uEyp5OueZUElKKE2IYhlNVnvoaPewv6v5zxn6FMKSECZ4nh-iWUpzxhgXR8g8uj_Q4GbdrXDo6xI8Htyq7nBYGA8BW9e2rsOta8COjfHYeLuoB7DD6AG_1sMCl1BBFwD30A8xIODKu3bafuHwu-4-o4PKNAFOtucx-nF_9_326_zh6cu32-uHueUyp_MclKC8UkQCTSWTUilbGBFvRJkRo6wpCjB5xVgleEYYU0AJEbyA0jBFLTtG55vc3ruXEcKg2zpYaBrTgRuDzknkMyV5JC8-JCnLJFdpmuURPXuHLt3ou_iPKS_OLZiMkNpA1rsQPFS693Vr_FpToidfeqknFXrSoidf-p8vvYqtp9v8sWih3DW-CYrA1QZ4rRtY_3ewvr-7eZ5K9hcemqQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901791537</pqid></control><display><type>article</type><title>Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Dubovskii, Peter V. ; Vassilevski, Alexander A. ; Samsonova, Olga V. ; Egorova, Natalya S. ; Kozlov, Sergey A. ; Feofanov, Alexei V. ; Arseniev, Alexander S. ; Grishin, Eugene V.</creator><creatorcontrib>Dubovskii, Peter V. ; Vassilevski, Alexander A. ; Samsonova, Olga V. ; Egorova, Natalya S. ; Kozlov, Sergey A. ; Feofanov, Alexei V. ; Arseniev, Alexander S. ; Grishin, Eugene V.</creatorcontrib><description>A unique 30‐residue cationic peptide oxyopinin 4a (Oxt 4a) was identified in the venom of the lynx spider Oxyopes takobius (Oxyopidae). Oxt 4a contains a single N‐terminally located disulfide bond, Cys4–Cys10, and is structurally different from any spider toxin studied so far. According to NMR findings, the peptide is disordered in water, but assumes a peculiar torpedo‐like structure in detergent micelles. It features a C‐terminal amphipathic α‐helical segment (body; residues 12–25) and an N‐terminal disulfide‐stabilized loop (head; residues 1–11), and has an unusually high density of positive charge in the head region. Synthetic Oxt 4a was produced and shown to possess strong and broad‐spectrum cytolytic and antimicrobial activity. cDNA cloning showed that the peptide is synthesized in the form of a conventional prepropeptide with an acidic prosequence. Unlike other arachnid toxins, Oxt 4a exhibits striking similarity with defense peptides from the skin of ranid frogs that contain the so‐called Rana‐box motif (a C‐terminal disulfide‐enclosed loop). Parallelism or convergence is apparent on several levels: the structure, function and biosynthesis of a lynx spider toxin are mirrored by those of Rana‐box peptides from frogs.
Database
The protein sequence of oxyopinin 4a (Oxt 4a) has been submitted to the UniProt Knowledgebase (UniProtKB) under the accession number P86350. The coordinates and chemical shifts of Oxt 4a in complex with dodecylphosphocholine micelles have been deposited in the Protein Data Bank and Biological Magnetic Resonance Bank under the accession codes 2L3I and 17194, respectively. The nucleotide sequence encoding Oxt 4a has been submitted to the EMBL Nucleotide Sequence Database under the accession number FN997582.
A unique 30‐residue cationic peptide oxyopinin 4a (Oxt 4a) from the venom of Oxyopes takobius spider contains a single disulfide bridge Cys4‐Cys10. Oxt 4a assumes a torpedo‐like structure in detergent micelles with an amphipathic α‐helical body (residues 12‐25) and a disulfide‐stabilized head loop (1‐11). Oxt 4a possesses cytolytic and antimicrobial activity and exhibits similarity with Rana‐box peptides from ranid frogs</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2011.08361.x</identifier><identifier>PMID: 21933345</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amino Acid Sequence ; Animals ; Antimicrobial Cationic Peptides - chemical synthesis ; Antimicrobial Cationic Peptides - chemistry ; Antimicrobial Cationic Peptides - pharmacology ; Anura ; Araneae ; Bacteria - drug effects ; Biochemistry ; Biosynthesis ; Circular Dichroism ; Cloning, Molecular ; Crystallography, X-Ray ; cytolytic peptide ; Frogs ; Hemolysis - drug effects ; Insecticides - pharmacology ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Oxyopidae ; Peptides ; precursor ; Protein Structure, Tertiary ; Rana‐box ; Ranidae ; Sequence Homology, Amino Acid ; Skin - metabolism ; spatial structure ; spider venom ; Spider Venoms - chemistry ; Spider Venoms - pharmacology ; Spiders ; Toxins</subject><ispartof>The FEBS journal, 2011-11, Vol.278 (22), p.4382-4393</ispartof><rights>2011 The Authors Journal compilation © 2011 FEBS</rights><rights>2011 The Authors Journal compilation © 2011 FEBS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4791-9e8514f807e12737788cba54f85d60a8cabbea9f33f5460338e10054beda381c3</citedby><cites>FETCH-LOGICAL-c4791-9e8514f807e12737788cba54f85d60a8cabbea9f33f5460338e10054beda381c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2011.08361.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2011.08361.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46388,46812</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21933345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubovskii, Peter V.</creatorcontrib><creatorcontrib>Vassilevski, Alexander A.</creatorcontrib><creatorcontrib>Samsonova, Olga V.</creatorcontrib><creatorcontrib>Egorova, Natalya S.</creatorcontrib><creatorcontrib>Kozlov, Sergey A.</creatorcontrib><creatorcontrib>Feofanov, Alexei V.</creatorcontrib><creatorcontrib>Arseniev, Alexander S.</creatorcontrib><creatorcontrib>Grishin, Eugene V.</creatorcontrib><title>Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>A unique 30‐residue cationic peptide oxyopinin 4a (Oxt 4a) was identified in the venom of the lynx spider Oxyopes takobius (Oxyopidae). Oxt 4a contains a single N‐terminally located disulfide bond, Cys4–Cys10, and is structurally different from any spider toxin studied so far. According to NMR findings, the peptide is disordered in water, but assumes a peculiar torpedo‐like structure in detergent micelles. It features a C‐terminal amphipathic α‐helical segment (body; residues 12–25) and an N‐terminal disulfide‐stabilized loop (head; residues 1–11), and has an unusually high density of positive charge in the head region. Synthetic Oxt 4a was produced and shown to possess strong and broad‐spectrum cytolytic and antimicrobial activity. cDNA cloning showed that the peptide is synthesized in the form of a conventional prepropeptide with an acidic prosequence. Unlike other arachnid toxins, Oxt 4a exhibits striking similarity with defense peptides from the skin of ranid frogs that contain the so‐called Rana‐box motif (a C‐terminal disulfide‐enclosed loop). Parallelism or convergence is apparent on several levels: the structure, function and biosynthesis of a lynx spider toxin are mirrored by those of Rana‐box peptides from frogs.
Database
The protein sequence of oxyopinin 4a (Oxt 4a) has been submitted to the UniProt Knowledgebase (UniProtKB) under the accession number P86350. The coordinates and chemical shifts of Oxt 4a in complex with dodecylphosphocholine micelles have been deposited in the Protein Data Bank and Biological Magnetic Resonance Bank under the accession codes 2L3I and 17194, respectively. The nucleotide sequence encoding Oxt 4a has been submitted to the EMBL Nucleotide Sequence Database under the accession number FN997582.
A unique 30‐residue cationic peptide oxyopinin 4a (Oxt 4a) from the venom of Oxyopes takobius spider contains a single disulfide bridge Cys4‐Cys10. Oxt 4a assumes a torpedo‐like structure in detergent micelles with an amphipathic α‐helical body (residues 12‐25) and a disulfide‐stabilized head loop (1‐11). Oxt 4a possesses cytolytic and antimicrobial activity and exhibits similarity with Rana‐box peptides from ranid frogs</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antimicrobial Cationic Peptides - chemical synthesis</subject><subject>Antimicrobial Cationic Peptides - chemistry</subject><subject>Antimicrobial Cationic Peptides - pharmacology</subject><subject>Anura</subject><subject>Araneae</subject><subject>Bacteria - drug effects</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>Circular Dichroism</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>cytolytic peptide</subject><subject>Frogs</subject><subject>Hemolysis - drug effects</subject><subject>Insecticides - pharmacology</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Oxyopidae</subject><subject>Peptides</subject><subject>precursor</subject><subject>Protein Structure, Tertiary</subject><subject>Rana‐box</subject><subject>Ranidae</subject><subject>Sequence Homology, Amino Acid</subject><subject>Skin - metabolism</subject><subject>spatial structure</subject><subject>spider venom</subject><subject>Spider Venoms - chemistry</subject><subject>Spider Venoms - pharmacology</subject><subject>Spiders</subject><subject>Toxins</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO3DAQhi0EYinlFZDFBS4b7NiOnQsSIGgrITjQSr1ZjjPpZpvEwU7K7tvX6S574IDqgz2yv_k11ocQpiShcV0uEyp5OueZUElKKE2IYhlNVnvoaPewv6v5zxn6FMKSECZ4nh-iWUpzxhgXR8g8uj_Q4GbdrXDo6xI8Htyq7nBYGA8BW9e2rsOta8COjfHYeLuoB7DD6AG_1sMCl1BBFwD30A8xIODKu3bafuHwu-4-o4PKNAFOtucx-nF_9_326_zh6cu32-uHueUyp_MclKC8UkQCTSWTUilbGBFvRJkRo6wpCjB5xVgleEYYU0AJEbyA0jBFLTtG55vc3ruXEcKg2zpYaBrTgRuDzknkMyV5JC8-JCnLJFdpmuURPXuHLt3ou_iPKS_OLZiMkNpA1rsQPFS693Vr_FpToidfeqknFXrSoidf-p8vvYqtp9v8sWih3DW-CYrA1QZ4rRtY_3ewvr-7eZ5K9hcemqQc</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Dubovskii, Peter V.</creator><creator>Vassilevski, Alexander A.</creator><creator>Samsonova, Olga V.</creator><creator>Egorova, Natalya S.</creator><creator>Kozlov, Sergey A.</creator><creator>Feofanov, Alexei V.</creator><creator>Arseniev, Alexander S.</creator><creator>Grishin, Eugene V.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7U7</scope><scope>7X8</scope></search><sort><creationdate>201111</creationdate><title>Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin</title><author>Dubovskii, Peter V. ; Vassilevski, Alexander A. ; Samsonova, Olga V. ; Egorova, Natalya S. ; Kozlov, Sergey A. ; Feofanov, Alexei V. ; Arseniev, Alexander S. ; Grishin, Eugene V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4791-9e8514f807e12737788cba54f85d60a8cabbea9f33f5460338e10054beda381c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antimicrobial Cationic Peptides - chemical synthesis</topic><topic>Antimicrobial Cationic Peptides - chemistry</topic><topic>Antimicrobial Cationic Peptides - pharmacology</topic><topic>Anura</topic><topic>Araneae</topic><topic>Bacteria - drug effects</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>Circular Dichroism</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>cytolytic peptide</topic><topic>Frogs</topic><topic>Hemolysis - drug effects</topic><topic>Insecticides - pharmacology</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Oxyopidae</topic><topic>Peptides</topic><topic>precursor</topic><topic>Protein Structure, Tertiary</topic><topic>Rana‐box</topic><topic>Ranidae</topic><topic>Sequence Homology, Amino Acid</topic><topic>Skin - metabolism</topic><topic>spatial structure</topic><topic>spider venom</topic><topic>Spider Venoms - chemistry</topic><topic>Spider Venoms - pharmacology</topic><topic>Spiders</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubovskii, Peter V.</creatorcontrib><creatorcontrib>Vassilevski, Alexander A.</creatorcontrib><creatorcontrib>Samsonova, Olga V.</creatorcontrib><creatorcontrib>Egorova, Natalya S.</creatorcontrib><creatorcontrib>Kozlov, Sergey A.</creatorcontrib><creatorcontrib>Feofanov, Alexei V.</creatorcontrib><creatorcontrib>Arseniev, Alexander S.</creatorcontrib><creatorcontrib>Grishin, Eugene V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Toxicology Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubovskii, Peter V.</au><au>Vassilevski, Alexander A.</au><au>Samsonova, Olga V.</au><au>Egorova, Natalya S.</au><au>Kozlov, Sergey A.</au><au>Feofanov, Alexei V.</au><au>Arseniev, Alexander S.</au><au>Grishin, Eugene V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2011-11</date><risdate>2011</risdate><volume>278</volume><issue>22</issue><spage>4382</spage><epage>4393</epage><pages>4382-4393</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>A unique 30‐residue cationic peptide oxyopinin 4a (Oxt 4a) was identified in the venom of the lynx spider Oxyopes takobius (Oxyopidae). Oxt 4a contains a single N‐terminally located disulfide bond, Cys4–Cys10, and is structurally different from any spider toxin studied so far. According to NMR findings, the peptide is disordered in water, but assumes a peculiar torpedo‐like structure in detergent micelles. It features a C‐terminal amphipathic α‐helical segment (body; residues 12–25) and an N‐terminal disulfide‐stabilized loop (head; residues 1–11), and has an unusually high density of positive charge in the head region. Synthetic Oxt 4a was produced and shown to possess strong and broad‐spectrum cytolytic and antimicrobial activity. cDNA cloning showed that the peptide is synthesized in the form of a conventional prepropeptide with an acidic prosequence. Unlike other arachnid toxins, Oxt 4a exhibits striking similarity with defense peptides from the skin of ranid frogs that contain the so‐called Rana‐box motif (a C‐terminal disulfide‐enclosed loop). Parallelism or convergence is apparent on several levels: the structure, function and biosynthesis of a lynx spider toxin are mirrored by those of Rana‐box peptides from frogs.
Database
The protein sequence of oxyopinin 4a (Oxt 4a) has been submitted to the UniProt Knowledgebase (UniProtKB) under the accession number P86350. The coordinates and chemical shifts of Oxt 4a in complex with dodecylphosphocholine micelles have been deposited in the Protein Data Bank and Biological Magnetic Resonance Bank under the accession codes 2L3I and 17194, respectively. The nucleotide sequence encoding Oxt 4a has been submitted to the EMBL Nucleotide Sequence Database under the accession number FN997582.
A unique 30‐residue cationic peptide oxyopinin 4a (Oxt 4a) from the venom of Oxyopes takobius spider contains a single disulfide bridge Cys4‐Cys10. Oxt 4a assumes a torpedo‐like structure in detergent micelles with an amphipathic α‐helical body (residues 12‐25) and a disulfide‐stabilized head loop (1‐11). Oxt 4a possesses cytolytic and antimicrobial activity and exhibits similarity with Rana‐box peptides from ranid frogs</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21933345</pmid><doi>10.1111/j.1742-4658.2011.08361.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2011-11, Vol.278 (22), p.4382-4393 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_901006874 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; IngentaConnect Free/Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals Antimicrobial Cationic Peptides - chemical synthesis Antimicrobial Cationic Peptides - chemistry Antimicrobial Cationic Peptides - pharmacology Anura Araneae Bacteria - drug effects Biochemistry Biosynthesis Circular Dichroism Cloning, Molecular Crystallography, X-Ray cytolytic peptide Frogs Hemolysis - drug effects Insecticides - pharmacology Magnetic Resonance Spectroscopy Models, Molecular Molecular Sequence Data Oxyopidae Peptides precursor Protein Structure, Tertiary Rana‐box Ranidae Sequence Homology, Amino Acid Skin - metabolism spatial structure spider venom Spider Venoms - chemistry Spider Venoms - pharmacology Spiders Toxins |
title | Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20lynx%20spider%20toxin%20shares%20common%20molecular%20architecture%20with%20defense%20peptides%20from%20frog%20skin&rft.jtitle=The%20FEBS%20journal&rft.au=Dubovskii,%20Peter%20V.&rft.date=2011-11&rft.volume=278&rft.issue=22&rft.spage=4382&rft.epage=4393&rft.pages=4382-4393&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2011.08361.x&rft_dat=%3Cproquest_cross%3E2496935231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901791537&rft_id=info:pmid/21933345&rfr_iscdi=true |