Site-specific gene transfer into the rat spinal cord by photomechanical waves
Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical w...
Gespeichert in:
Veröffentlicht in: | Journal of Biomedical Optics 2011-10, Vol.16 (10), p.108002-108002 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108002 |
---|---|
container_issue | 10 |
container_start_page | 108002 |
container_title | Journal of Biomedical Optics |
container_volume | 16 |
creator | Ando, Takahiro Obara, Minoru Sato, Shunichi Ashida, Hiroshi Toyooka, Terushige Uozumi, Yoichi Nawashiro, Hiroshi |
description | Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage. |
doi_str_mv | 10.1117/1.3642014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901002457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901002457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a2fa0ff617aaf0502de3b48bbf8fe0dd70d3709a05f3ec75cfb83ccb5c57702d3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMQCMEYmNw4A-g3BCHDidpm_YIE-NDQ0MCzlWaOiyoa0vSgfbvCduYLMVO_ORYj5BzBmPGmLxmY5HGHFh8QIYsSSHiPGOHoYZMRCJNswE58f4TALI0T4_JgHPguZAwJM-vtsfId6itsZp-YIO0d6rxBh21Td_SfoHUqZ76zjaqprp1FS3XtFu0fbtEvVCN1eH9R32jPyVHRtUez3Z5RN6nd2-Th2g2v3-c3MwizXPeR4obBcakTCplIAFeoSjjrCxNZhCqSkIVlssVJEaglok2ZSa0LhOdSBloMSKX27mda79W6Ptiab3GulYNtitf5MAAeJzIQF5tSe1a7x2aonN2qdy6YFD8yStYsZMX2Ivd1FW5xGpP_tsKAN8CwQXu20-385fpPMgFlm7OEFn4HjYX8QuI8HfN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901002457</pqid></control><display><type>article</type><title>Site-specific gene transfer into the rat spinal cord by photomechanical waves</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ando, Takahiro ; Obara, Minoru ; Sato, Shunichi ; Ashida, Hiroshi ; Toyooka, Terushige ; Uozumi, Yoichi ; Nawashiro, Hiroshi</creator><creatorcontrib>Ando, Takahiro ; Obara, Minoru ; Sato, Shunichi ; Ashida, Hiroshi ; Toyooka, Terushige ; Uozumi, Yoichi ; Nawashiro, Hiroshi</creatorcontrib><description>Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.3642014</identifier><identifier>PMID: 22029370</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Female ; Gene Expression ; Gene Transfer Techniques ; Genes, Reporter ; Genetic Therapy - methods ; Green Fluorescent Proteins - genetics ; Lasers, Solid-State ; Locomotion ; Luciferases - genetics ; Mechanical Phenomena ; Optical Phenomena ; Plasmids - administration & dosage ; Plasmids - genetics ; Pressure ; Rats ; Rats, Sprague-Dawley ; Spinal Cord Injuries - genetics ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - therapy</subject><ispartof>Journal of Biomedical Optics, 2011-10, Vol.16 (10), p.108002-108002</ispartof><rights>2012 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a2fa0ff617aaf0502de3b48bbf8fe0dd70d3709a05f3ec75cfb83ccb5c57702d3</citedby><cites>FETCH-LOGICAL-c292t-a2fa0ff617aaf0502de3b48bbf8fe0dd70d3709a05f3ec75cfb83ccb5c57702d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22029370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ando, Takahiro</creatorcontrib><creatorcontrib>Obara, Minoru</creatorcontrib><creatorcontrib>Sato, Shunichi</creatorcontrib><creatorcontrib>Ashida, Hiroshi</creatorcontrib><creatorcontrib>Toyooka, Terushige</creatorcontrib><creatorcontrib>Uozumi, Yoichi</creatorcontrib><creatorcontrib>Nawashiro, Hiroshi</creatorcontrib><title>Site-specific gene transfer into the rat spinal cord by photomechanical waves</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.</description><subject>Animals</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Gene Transfer Techniques</subject><subject>Genes, Reporter</subject><subject>Genetic Therapy - methods</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Lasers, Solid-State</subject><subject>Locomotion</subject><subject>Luciferases - genetics</subject><subject>Mechanical Phenomena</subject><subject>Optical Phenomena</subject><subject>Plasmids - administration & dosage</subject><subject>Plasmids - genetics</subject><subject>Pressure</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Spinal Cord Injuries - genetics</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - therapy</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1PwzAMQCMEYmNw4A-g3BCHDidpm_YIE-NDQ0MCzlWaOiyoa0vSgfbvCduYLMVO_ORYj5BzBmPGmLxmY5HGHFh8QIYsSSHiPGOHoYZMRCJNswE58f4TALI0T4_JgHPguZAwJM-vtsfId6itsZp-YIO0d6rxBh21Td_SfoHUqZ76zjaqprp1FS3XtFu0fbtEvVCN1eH9R32jPyVHRtUez3Z5RN6nd2-Th2g2v3-c3MwizXPeR4obBcakTCplIAFeoSjjrCxNZhCqSkIVlssVJEaglok2ZSa0LhOdSBloMSKX27mda79W6Ptiab3GulYNtitf5MAAeJzIQF5tSe1a7x2aonN2qdy6YFD8yStYsZMX2Ivd1FW5xGpP_tsKAN8CwQXu20-385fpPMgFlm7OEFn4HjYX8QuI8HfN</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Ando, Takahiro</creator><creator>Obara, Minoru</creator><creator>Sato, Shunichi</creator><creator>Ashida, Hiroshi</creator><creator>Toyooka, Terushige</creator><creator>Uozumi, Yoichi</creator><creator>Nawashiro, Hiroshi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111001</creationdate><title>Site-specific gene transfer into the rat spinal cord by photomechanical waves</title><author>Ando, Takahiro ; Obara, Minoru ; Sato, Shunichi ; Ashida, Hiroshi ; Toyooka, Terushige ; Uozumi, Yoichi ; Nawashiro, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a2fa0ff617aaf0502de3b48bbf8fe0dd70d3709a05f3ec75cfb83ccb5c57702d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Gene Transfer Techniques</topic><topic>Genes, Reporter</topic><topic>Genetic Therapy - methods</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Lasers, Solid-State</topic><topic>Locomotion</topic><topic>Luciferases - genetics</topic><topic>Mechanical Phenomena</topic><topic>Optical Phenomena</topic><topic>Plasmids - administration & dosage</topic><topic>Plasmids - genetics</topic><topic>Pressure</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Spinal Cord Injuries - genetics</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ando, Takahiro</creatorcontrib><creatorcontrib>Obara, Minoru</creatorcontrib><creatorcontrib>Sato, Shunichi</creatorcontrib><creatorcontrib>Ashida, Hiroshi</creatorcontrib><creatorcontrib>Toyooka, Terushige</creatorcontrib><creatorcontrib>Uozumi, Yoichi</creatorcontrib><creatorcontrib>Nawashiro, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ando, Takahiro</au><au>Obara, Minoru</au><au>Sato, Shunichi</au><au>Ashida, Hiroshi</au><au>Toyooka, Terushige</au><au>Uozumi, Yoichi</au><au>Nawashiro, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-specific gene transfer into the rat spinal cord by photomechanical waves</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>16</volume><issue>10</issue><spage>108002</spage><epage>108002</epage><pages>108002-108002</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.</abstract><cop>United States</cop><pmid>22029370</pmid><doi>10.1117/1.3642014</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-3668 |
ispartof | Journal of Biomedical Optics, 2011-10, Vol.16 (10), p.108002-108002 |
issn | 1083-3668 1560-2281 |
language | eng |
recordid | cdi_proquest_miscellaneous_901002457 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Female Gene Expression Gene Transfer Techniques Genes, Reporter Genetic Therapy - methods Green Fluorescent Proteins - genetics Lasers, Solid-State Locomotion Luciferases - genetics Mechanical Phenomena Optical Phenomena Plasmids - administration & dosage Plasmids - genetics Pressure Rats Rats, Sprague-Dawley Spinal Cord Injuries - genetics Spinal Cord Injuries - physiopathology Spinal Cord Injuries - therapy |
title | Site-specific gene transfer into the rat spinal cord by photomechanical waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-specific%20gene%20transfer%20into%20the%20rat%20spinal%20cord%20by%20photomechanical%20waves&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Ando,%20Takahiro&rft.date=2011-10-01&rft.volume=16&rft.issue=10&rft.spage=108002&rft.epage=108002&rft.pages=108002-108002&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.3642014&rft_dat=%3Cproquest_cross%3E901002457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901002457&rft_id=info:pmid/22029370&rfr_iscdi=true |