Site-specific gene transfer into the rat spinal cord by photomechanical waves

Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Biomedical Optics 2011-10, Vol.16 (10), p.108002-108002
Hauptverfasser: Ando, Takahiro, Obara, Minoru, Sato, Shunichi, Ashida, Hiroshi, Toyooka, Terushige, Uozumi, Yoichi, Nawashiro, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108002
container_issue 10
container_start_page 108002
container_title Journal of Biomedical Optics
container_volume 16
creator Ando, Takahiro
Obara, Minoru
Sato, Shunichi
Ashida, Hiroshi
Toyooka, Terushige
Uozumi, Yoichi
Nawashiro, Hiroshi
description Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.
doi_str_mv 10.1117/1.3642014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901002457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901002457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a2fa0ff617aaf0502de3b48bbf8fe0dd70d3709a05f3ec75cfb83ccb5c57702d3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMQCMEYmNw4A-g3BCHDidpm_YIE-NDQ0MCzlWaOiyoa0vSgfbvCduYLMVO_ORYj5BzBmPGmLxmY5HGHFh8QIYsSSHiPGOHoYZMRCJNswE58f4TALI0T4_JgHPguZAwJM-vtsfId6itsZp-YIO0d6rxBh21Td_SfoHUqZ76zjaqprp1FS3XtFu0fbtEvVCN1eH9R32jPyVHRtUez3Z5RN6nd2-Th2g2v3-c3MwizXPeR4obBcakTCplIAFeoSjjrCxNZhCqSkIVlssVJEaglok2ZSa0LhOdSBloMSKX27mda79W6Ptiab3GulYNtitf5MAAeJzIQF5tSe1a7x2aonN2qdy6YFD8yStYsZMX2Ivd1FW5xGpP_tsKAN8CwQXu20-385fpPMgFlm7OEFn4HjYX8QuI8HfN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901002457</pqid></control><display><type>article</type><title>Site-specific gene transfer into the rat spinal cord by photomechanical waves</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ando, Takahiro ; Obara, Minoru ; Sato, Shunichi ; Ashida, Hiroshi ; Toyooka, Terushige ; Uozumi, Yoichi ; Nawashiro, Hiroshi</creator><creatorcontrib>Ando, Takahiro ; Obara, Minoru ; Sato, Shunichi ; Ashida, Hiroshi ; Toyooka, Terushige ; Uozumi, Yoichi ; Nawashiro, Hiroshi</creatorcontrib><description>Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.3642014</identifier><identifier>PMID: 22029370</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Female ; Gene Expression ; Gene Transfer Techniques ; Genes, Reporter ; Genetic Therapy - methods ; Green Fluorescent Proteins - genetics ; Lasers, Solid-State ; Locomotion ; Luciferases - genetics ; Mechanical Phenomena ; Optical Phenomena ; Plasmids - administration &amp; dosage ; Plasmids - genetics ; Pressure ; Rats ; Rats, Sprague-Dawley ; Spinal Cord Injuries - genetics ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - therapy</subject><ispartof>Journal of Biomedical Optics, 2011-10, Vol.16 (10), p.108002-108002</ispartof><rights>2012 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a2fa0ff617aaf0502de3b48bbf8fe0dd70d3709a05f3ec75cfb83ccb5c57702d3</citedby><cites>FETCH-LOGICAL-c292t-a2fa0ff617aaf0502de3b48bbf8fe0dd70d3709a05f3ec75cfb83ccb5c57702d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22029370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ando, Takahiro</creatorcontrib><creatorcontrib>Obara, Minoru</creatorcontrib><creatorcontrib>Sato, Shunichi</creatorcontrib><creatorcontrib>Ashida, Hiroshi</creatorcontrib><creatorcontrib>Toyooka, Terushige</creatorcontrib><creatorcontrib>Uozumi, Yoichi</creatorcontrib><creatorcontrib>Nawashiro, Hiroshi</creatorcontrib><title>Site-specific gene transfer into the rat spinal cord by photomechanical waves</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.</description><subject>Animals</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Gene Transfer Techniques</subject><subject>Genes, Reporter</subject><subject>Genetic Therapy - methods</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Lasers, Solid-State</subject><subject>Locomotion</subject><subject>Luciferases - genetics</subject><subject>Mechanical Phenomena</subject><subject>Optical Phenomena</subject><subject>Plasmids - administration &amp; dosage</subject><subject>Plasmids - genetics</subject><subject>Pressure</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Spinal Cord Injuries - genetics</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - therapy</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1PwzAMQCMEYmNw4A-g3BCHDidpm_YIE-NDQ0MCzlWaOiyoa0vSgfbvCduYLMVO_ORYj5BzBmPGmLxmY5HGHFh8QIYsSSHiPGOHoYZMRCJNswE58f4TALI0T4_JgHPguZAwJM-vtsfId6itsZp-YIO0d6rxBh21Td_SfoHUqZ76zjaqprp1FS3XtFu0fbtEvVCN1eH9R32jPyVHRtUez3Z5RN6nd2-Th2g2v3-c3MwizXPeR4obBcakTCplIAFeoSjjrCxNZhCqSkIVlssVJEaglok2ZSa0LhOdSBloMSKX27mda79W6Ptiab3GulYNtitf5MAAeJzIQF5tSe1a7x2aonN2qdy6YFD8yStYsZMX2Ivd1FW5xGpP_tsKAN8CwQXu20-385fpPMgFlm7OEFn4HjYX8QuI8HfN</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Ando, Takahiro</creator><creator>Obara, Minoru</creator><creator>Sato, Shunichi</creator><creator>Ashida, Hiroshi</creator><creator>Toyooka, Terushige</creator><creator>Uozumi, Yoichi</creator><creator>Nawashiro, Hiroshi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111001</creationdate><title>Site-specific gene transfer into the rat spinal cord by photomechanical waves</title><author>Ando, Takahiro ; Obara, Minoru ; Sato, Shunichi ; Ashida, Hiroshi ; Toyooka, Terushige ; Uozumi, Yoichi ; Nawashiro, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a2fa0ff617aaf0502de3b48bbf8fe0dd70d3709a05f3ec75cfb83ccb5c57702d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Gene Transfer Techniques</topic><topic>Genes, Reporter</topic><topic>Genetic Therapy - methods</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Lasers, Solid-State</topic><topic>Locomotion</topic><topic>Luciferases - genetics</topic><topic>Mechanical Phenomena</topic><topic>Optical Phenomena</topic><topic>Plasmids - administration &amp; dosage</topic><topic>Plasmids - genetics</topic><topic>Pressure</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Spinal Cord Injuries - genetics</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ando, Takahiro</creatorcontrib><creatorcontrib>Obara, Minoru</creatorcontrib><creatorcontrib>Sato, Shunichi</creatorcontrib><creatorcontrib>Ashida, Hiroshi</creatorcontrib><creatorcontrib>Toyooka, Terushige</creatorcontrib><creatorcontrib>Uozumi, Yoichi</creatorcontrib><creatorcontrib>Nawashiro, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ando, Takahiro</au><au>Obara, Minoru</au><au>Sato, Shunichi</au><au>Ashida, Hiroshi</au><au>Toyooka, Terushige</au><au>Uozumi, Yoichi</au><au>Nawashiro, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-specific gene transfer into the rat spinal cord by photomechanical waves</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>16</volume><issue>10</issue><spage>108002</spage><epage>108002</epage><pages>108002-108002</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.</abstract><cop>United States</cop><pmid>22029370</pmid><doi>10.1117/1.3642014</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of Biomedical Optics, 2011-10, Vol.16 (10), p.108002-108002
issn 1083-3668
1560-2281
language eng
recordid cdi_proquest_miscellaneous_901002457
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Female
Gene Expression
Gene Transfer Techniques
Genes, Reporter
Genetic Therapy - methods
Green Fluorescent Proteins - genetics
Lasers, Solid-State
Locomotion
Luciferases - genetics
Mechanical Phenomena
Optical Phenomena
Plasmids - administration & dosage
Plasmids - genetics
Pressure
Rats
Rats, Sprague-Dawley
Spinal Cord Injuries - genetics
Spinal Cord Injuries - physiopathology
Spinal Cord Injuries - therapy
title Site-specific gene transfer into the rat spinal cord by photomechanical waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-specific%20gene%20transfer%20into%20the%20rat%20spinal%20cord%20by%20photomechanical%20waves&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Ando,%20Takahiro&rft.date=2011-10-01&rft.volume=16&rft.issue=10&rft.spage=108002&rft.epage=108002&rft.pages=108002-108002&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.3642014&rft_dat=%3Cproquest_cross%3E901002457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901002457&rft_id=info:pmid/22029370&rfr_iscdi=true