Water-Repellent Cellulose Fiber Networks with Multifunctional Properties

We demonstrate a simple but highly efficient technique to introduce multifunctional properties to cellulose fiber networks by wetting them with ethyl-cyanoacrylate monomer solutions containing various suspended organic submicrometer particles or inorganic nanoparticles. Solutions can be applied on c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2011-10, Vol.3 (10), p.4024-4031
Hauptverfasser: Bayer, Ilker S, Fragouli, Despina, Attanasio, Agnese, Sorce, Barbara, Bertoni, Giovanni, Brescia, Rosaria, Di Corato, Riccardo, Pellegrino, Teresa, Kalyva, Maria, Sabella, Stefania, Pompa, Pier Paolo, Cingolani, Roberto, Athanassiou, Athanassia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4031
container_issue 10
container_start_page 4024
container_title ACS applied materials & interfaces
container_volume 3
creator Bayer, Ilker S
Fragouli, Despina
Attanasio, Agnese
Sorce, Barbara
Bertoni, Giovanni
Brescia, Rosaria
Di Corato, Riccardo
Pellegrino, Teresa
Kalyva, Maria
Sabella, Stefania
Pompa, Pier Paolo
Cingolani, Roberto
Athanassiou, Athanassia
description We demonstrate a simple but highly efficient technique to introduce multifunctional properties to cellulose fiber networks by wetting them with ethyl-cyanoacrylate monomer solutions containing various suspended organic submicrometer particles or inorganic nanoparticles. Solutions can be applied on cellulosic surfaces by simple solution casting techniques or by dip coating, both being suitable for large area applications. Immediately after solvent evaporation, ethyl-cyanoacrylate starts cross-linking around cellulose fibers under ambient conditions because of naturally occurring surface hydroxyl groups and adsorbed moisture, encapsulating them with a hydrophobic polymer shell. Furthermore, by dispersing various functional particles in the monomer solutions, hydrophobic ethyl-cyanoacrylate nanocomposites with desired functionalities can be formed around the cellulose fibers. To exhibit the versatility of the method, cellulose sheets were functionalized with different ethyl-cyanoacrylate nanocomposite shells comprising submicrometer wax or polytetrafluoroethylene particles for superhydophobicity, MnFe2O4 nanoparticles for magnetic activity, CdSe/ZnS quantum dots for light emission, and silver nanoparticles for antimicrobial activity. Morphological and functional properties of each system have been studied by scanning and transmission electron microscopy, detailed contact angle measurements, light emission spectra and E. coli bacterial growth measurements. A plethora of potential applications can be envisioned for this technique, such as food and industrial packaging, document protection, catalytic cellulosic membranes, textronic (electrofunctional textiles), electromagnetic devices, authentication of valuable documents, and antimicrobial wound healing products to name a few.
doi_str_mv 10.1021/am200891f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_900775036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>900775036</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-b354f4374fb93372260d926008b1ff1e114ad638ec177b2c7f1360ba2fefdaae3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK0e_AOSi4iH6OxHPvYowVqhfiCKx7BJZjE1ycbdDcV_b6S1Jy_zzuHhZeYh5JTCFQVGr1XLAFJJ9R6ZUilEmLKI7e92ISbkyLkVQMwZRIdkwqgExricksW78mjDF-yxabDzQTbm0BiHwbwu0AaP6NfGfrpgXfuP4GFofK2HrvS16VQTPFvTo_U1umNyoFXj8GSbM_I2v33NFuHy6e4-u1mGigvpw4JHQgueCF1IzhPGYqjkOCAtqNYUKRWqinmKJU2SgpWJpjyGQjGNulIK-YxcbHp7a74GdD5va1eOR6sOzeByCZAkEfB4JC83ZGmNcxZ13tu6VfY7p5D_est33kb2bNs6FC1WO_JP1AicbwBVunxlBjt-7_4p-gGSiXRf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900775036</pqid></control><display><type>article</type><title>Water-Repellent Cellulose Fiber Networks with Multifunctional Properties</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bayer, Ilker S ; Fragouli, Despina ; Attanasio, Agnese ; Sorce, Barbara ; Bertoni, Giovanni ; Brescia, Rosaria ; Di Corato, Riccardo ; Pellegrino, Teresa ; Kalyva, Maria ; Sabella, Stefania ; Pompa, Pier Paolo ; Cingolani, Roberto ; Athanassiou, Athanassia</creator><creatorcontrib>Bayer, Ilker S ; Fragouli, Despina ; Attanasio, Agnese ; Sorce, Barbara ; Bertoni, Giovanni ; Brescia, Rosaria ; Di Corato, Riccardo ; Pellegrino, Teresa ; Kalyva, Maria ; Sabella, Stefania ; Pompa, Pier Paolo ; Cingolani, Roberto ; Athanassiou, Athanassia</creatorcontrib><description>We demonstrate a simple but highly efficient technique to introduce multifunctional properties to cellulose fiber networks by wetting them with ethyl-cyanoacrylate monomer solutions containing various suspended organic submicrometer particles or inorganic nanoparticles. Solutions can be applied on cellulosic surfaces by simple solution casting techniques or by dip coating, both being suitable for large area applications. Immediately after solvent evaporation, ethyl-cyanoacrylate starts cross-linking around cellulose fibers under ambient conditions because of naturally occurring surface hydroxyl groups and adsorbed moisture, encapsulating them with a hydrophobic polymer shell. Furthermore, by dispersing various functional particles in the monomer solutions, hydrophobic ethyl-cyanoacrylate nanocomposites with desired functionalities can be formed around the cellulose fibers. To exhibit the versatility of the method, cellulose sheets were functionalized with different ethyl-cyanoacrylate nanocomposite shells comprising submicrometer wax or polytetrafluoroethylene particles for superhydophobicity, MnFe2O4 nanoparticles for magnetic activity, CdSe/ZnS quantum dots for light emission, and silver nanoparticles for antimicrobial activity. Morphological and functional properties of each system have been studied by scanning and transmission electron microscopy, detailed contact angle measurements, light emission spectra and E. coli bacterial growth measurements. A plethora of potential applications can be envisioned for this technique, such as food and industrial packaging, document protection, catalytic cellulosic membranes, textronic (electrofunctional textiles), electromagnetic devices, authentication of valuable documents, and antimicrobial wound healing products to name a few.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am200891f</identifier><identifier>PMID: 21902239</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Bacterial Adhesion ; Biocompatible Materials - chemistry ; Cellulose - chemistry ; Escherichia coli - drug effects ; Escherichia coli - growth &amp; development ; Escherichia coli - physiology ; Food Packaging - instrumentation ; Hydrophobic and Hydrophilic Interactions ; Nanocomposites - chemistry ; Silver - chemistry ; Silver - pharmacology ; Water - chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2011-10, Vol.3 (10), p.4024-4031</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-b354f4374fb93372260d926008b1ff1e114ad638ec177b2c7f1360ba2fefdaae3</citedby><cites>FETCH-LOGICAL-a349t-b354f4374fb93372260d926008b1ff1e114ad638ec177b2c7f1360ba2fefdaae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am200891f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am200891f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21902239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayer, Ilker S</creatorcontrib><creatorcontrib>Fragouli, Despina</creatorcontrib><creatorcontrib>Attanasio, Agnese</creatorcontrib><creatorcontrib>Sorce, Barbara</creatorcontrib><creatorcontrib>Bertoni, Giovanni</creatorcontrib><creatorcontrib>Brescia, Rosaria</creatorcontrib><creatorcontrib>Di Corato, Riccardo</creatorcontrib><creatorcontrib>Pellegrino, Teresa</creatorcontrib><creatorcontrib>Kalyva, Maria</creatorcontrib><creatorcontrib>Sabella, Stefania</creatorcontrib><creatorcontrib>Pompa, Pier Paolo</creatorcontrib><creatorcontrib>Cingolani, Roberto</creatorcontrib><creatorcontrib>Athanassiou, Athanassia</creatorcontrib><title>Water-Repellent Cellulose Fiber Networks with Multifunctional Properties</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We demonstrate a simple but highly efficient technique to introduce multifunctional properties to cellulose fiber networks by wetting them with ethyl-cyanoacrylate monomer solutions containing various suspended organic submicrometer particles or inorganic nanoparticles. Solutions can be applied on cellulosic surfaces by simple solution casting techniques or by dip coating, both being suitable for large area applications. Immediately after solvent evaporation, ethyl-cyanoacrylate starts cross-linking around cellulose fibers under ambient conditions because of naturally occurring surface hydroxyl groups and adsorbed moisture, encapsulating them with a hydrophobic polymer shell. Furthermore, by dispersing various functional particles in the monomer solutions, hydrophobic ethyl-cyanoacrylate nanocomposites with desired functionalities can be formed around the cellulose fibers. To exhibit the versatility of the method, cellulose sheets were functionalized with different ethyl-cyanoacrylate nanocomposite shells comprising submicrometer wax or polytetrafluoroethylene particles for superhydophobicity, MnFe2O4 nanoparticles for magnetic activity, CdSe/ZnS quantum dots for light emission, and silver nanoparticles for antimicrobial activity. Morphological and functional properties of each system have been studied by scanning and transmission electron microscopy, detailed contact angle measurements, light emission spectra and E. coli bacterial growth measurements. A plethora of potential applications can be envisioned for this technique, such as food and industrial packaging, document protection, catalytic cellulosic membranes, textronic (electrofunctional textiles), electromagnetic devices, authentication of valuable documents, and antimicrobial wound healing products to name a few.</description><subject>Adsorption</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacterial Adhesion</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cellulose - chemistry</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - physiology</subject><subject>Food Packaging - instrumentation</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Nanocomposites - chemistry</subject><subject>Silver - chemistry</subject><subject>Silver - pharmacology</subject><subject>Water - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1Lw0AQhhdRbK0e_AOSi4iH6OxHPvYowVqhfiCKx7BJZjE1ycbdDcV_b6S1Jy_zzuHhZeYh5JTCFQVGr1XLAFJJ9R6ZUilEmLKI7e92ISbkyLkVQMwZRIdkwqgExricksW78mjDF-yxabDzQTbm0BiHwbwu0AaP6NfGfrpgXfuP4GFofK2HrvS16VQTPFvTo_U1umNyoFXj8GSbM_I2v33NFuHy6e4-u1mGigvpw4JHQgueCF1IzhPGYqjkOCAtqNYUKRWqinmKJU2SgpWJpjyGQjGNulIK-YxcbHp7a74GdD5va1eOR6sOzeByCZAkEfB4JC83ZGmNcxZ13tu6VfY7p5D_est33kb2bNs6FC1WO_JP1AicbwBVunxlBjt-7_4p-gGSiXRf</recordid><startdate>20111026</startdate><enddate>20111026</enddate><creator>Bayer, Ilker S</creator><creator>Fragouli, Despina</creator><creator>Attanasio, Agnese</creator><creator>Sorce, Barbara</creator><creator>Bertoni, Giovanni</creator><creator>Brescia, Rosaria</creator><creator>Di Corato, Riccardo</creator><creator>Pellegrino, Teresa</creator><creator>Kalyva, Maria</creator><creator>Sabella, Stefania</creator><creator>Pompa, Pier Paolo</creator><creator>Cingolani, Roberto</creator><creator>Athanassiou, Athanassia</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111026</creationdate><title>Water-Repellent Cellulose Fiber Networks with Multifunctional Properties</title><author>Bayer, Ilker S ; Fragouli, Despina ; Attanasio, Agnese ; Sorce, Barbara ; Bertoni, Giovanni ; Brescia, Rosaria ; Di Corato, Riccardo ; Pellegrino, Teresa ; Kalyva, Maria ; Sabella, Stefania ; Pompa, Pier Paolo ; Cingolani, Roberto ; Athanassiou, Athanassia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-b354f4374fb93372260d926008b1ff1e114ad638ec177b2c7f1360ba2fefdaae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacterial Adhesion</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cellulose - chemistry</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - physiology</topic><topic>Food Packaging - instrumentation</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Nanocomposites - chemistry</topic><topic>Silver - chemistry</topic><topic>Silver - pharmacology</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayer, Ilker S</creatorcontrib><creatorcontrib>Fragouli, Despina</creatorcontrib><creatorcontrib>Attanasio, Agnese</creatorcontrib><creatorcontrib>Sorce, Barbara</creatorcontrib><creatorcontrib>Bertoni, Giovanni</creatorcontrib><creatorcontrib>Brescia, Rosaria</creatorcontrib><creatorcontrib>Di Corato, Riccardo</creatorcontrib><creatorcontrib>Pellegrino, Teresa</creatorcontrib><creatorcontrib>Kalyva, Maria</creatorcontrib><creatorcontrib>Sabella, Stefania</creatorcontrib><creatorcontrib>Pompa, Pier Paolo</creatorcontrib><creatorcontrib>Cingolani, Roberto</creatorcontrib><creatorcontrib>Athanassiou, Athanassia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayer, Ilker S</au><au>Fragouli, Despina</au><au>Attanasio, Agnese</au><au>Sorce, Barbara</au><au>Bertoni, Giovanni</au><au>Brescia, Rosaria</au><au>Di Corato, Riccardo</au><au>Pellegrino, Teresa</au><au>Kalyva, Maria</au><au>Sabella, Stefania</au><au>Pompa, Pier Paolo</au><au>Cingolani, Roberto</au><au>Athanassiou, Athanassia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water-Repellent Cellulose Fiber Networks with Multifunctional Properties</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2011-10-26</date><risdate>2011</risdate><volume>3</volume><issue>10</issue><spage>4024</spage><epage>4031</epage><pages>4024-4031</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We demonstrate a simple but highly efficient technique to introduce multifunctional properties to cellulose fiber networks by wetting them with ethyl-cyanoacrylate monomer solutions containing various suspended organic submicrometer particles or inorganic nanoparticles. Solutions can be applied on cellulosic surfaces by simple solution casting techniques or by dip coating, both being suitable for large area applications. Immediately after solvent evaporation, ethyl-cyanoacrylate starts cross-linking around cellulose fibers under ambient conditions because of naturally occurring surface hydroxyl groups and adsorbed moisture, encapsulating them with a hydrophobic polymer shell. Furthermore, by dispersing various functional particles in the monomer solutions, hydrophobic ethyl-cyanoacrylate nanocomposites with desired functionalities can be formed around the cellulose fibers. To exhibit the versatility of the method, cellulose sheets were functionalized with different ethyl-cyanoacrylate nanocomposite shells comprising submicrometer wax or polytetrafluoroethylene particles for superhydophobicity, MnFe2O4 nanoparticles for magnetic activity, CdSe/ZnS quantum dots for light emission, and silver nanoparticles for antimicrobial activity. Morphological and functional properties of each system have been studied by scanning and transmission electron microscopy, detailed contact angle measurements, light emission spectra and E. coli bacterial growth measurements. A plethora of potential applications can be envisioned for this technique, such as food and industrial packaging, document protection, catalytic cellulosic membranes, textronic (electrofunctional textiles), electromagnetic devices, authentication of valuable documents, and antimicrobial wound healing products to name a few.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21902239</pmid><doi>10.1021/am200891f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2011-10, Vol.3 (10), p.4024-4031
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_900775036
source MEDLINE; ACS Publications
subjects Adsorption
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Bacterial Adhesion
Biocompatible Materials - chemistry
Cellulose - chemistry
Escherichia coli - drug effects
Escherichia coli - growth & development
Escherichia coli - physiology
Food Packaging - instrumentation
Hydrophobic and Hydrophilic Interactions
Nanocomposites - chemistry
Silver - chemistry
Silver - pharmacology
Water - chemistry
title Water-Repellent Cellulose Fiber Networks with Multifunctional Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water-Repellent%20Cellulose%20Fiber%20Networks%20with%20Multifunctional%20Properties&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Bayer,%20Ilker%20S&rft.date=2011-10-26&rft.volume=3&rft.issue=10&rft.spage=4024&rft.epage=4031&rft.pages=4024-4031&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am200891f&rft_dat=%3Cproquest_cross%3E900775036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900775036&rft_id=info:pmid/21902239&rfr_iscdi=true