Polymer-Coated NaYF4:Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging

Lanthanide-doped upconversion nanoparticles (UCNPs) are considered promising novel near-infrared (NIR) bioimaging agents with the characteristics of high contrast and high penetration depth. However, the interactions between charged UCNPs and mammalian cells have not been thoroughly studied, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2011-10, Vol.5 (10), p.7838-7847
Hauptverfasser: Jin, Jiefu, Gu, Yan-Juan, Man, Cornelia Wing-Yin, Cheng, Jinping, Xu, Zhenhua, Zhang, Yue, Wang, Huaishan, Lee, Vien Hoi-Yi, Cheng, Shuk Han, Wong, Wing-Tak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7847
container_issue 10
container_start_page 7838
container_title ACS nano
container_volume 5
creator Jin, Jiefu
Gu, Yan-Juan
Man, Cornelia Wing-Yin
Cheng, Jinping
Xu, Zhenhua
Zhang, Yue
Wang, Huaishan
Lee, Vien Hoi-Yi
Cheng, Shuk Han
Wong, Wing-Tak
description Lanthanide-doped upconversion nanoparticles (UCNPs) are considered promising novel near-infrared (NIR) bioimaging agents with the characteristics of high contrast and high penetration depth. However, the interactions between charged UCNPs and mammalian cells have not been thoroughly studied, and the corresponding intracellular uptake pathways remain unclear. Herein, our research work involved the use of a hydrothermal method to synthesize polyvinylpyrrolidone-coated UCNPs (UCNP-PVP), and then a ligand exchange reaction was performed on UCNP-PVP, with the help of polyethylenimine (PEI) and poly(acrylic acid) (PAA), to generate UCNP-PEI and UCNP-PAA. These polymer-coated UCNPs demonstrated good dispersibility in aqueous medium, had the same elemental composition and crystal phase, shared similar TEM and dynamic light scattering (DLS) size distribution, and exhibited similar upconversion luminescence efficiency. However, the positively charged UCNP-PEI evinced greatly enhanced cellular uptake in comparison with its neutral or negative counterparts, as shown by multiphoton confocal microscopy and inductively coupled plasma mass spectrometry (ICP-MS) measurements. Meanwhile, we found that cationic UCNP-PEI can be effectively internalized mainly through the clathrin endocytic mechanism, as revealed by colocalization, chemical, and genetic inhibitor studies. This study elucidates the role of the surface polymer coatings in governing UCNP–cell interactions, and it is the first report on the endocytic mechanism of positively charged lanthanide-doped UCNPs. Furthermore, this study provides important guidance for the development of UCNPs as specific intracellular nanoprobes, allowing us to control the UCNP–cell interactions by tuning surface properties.
doi_str_mv 10.1021/nn201896m
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_900642167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>900642167</sourcerecordid><originalsourceid>FETCH-LOGICAL-a236t-291bb0e5584307c6cef9131cc67fed94eb32502a430ab0bd3260c69d0aae2d373</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRbK0u_AOSjbio0flIJhl3ElstFHVhwa7iZPJSU5KZOJMI_femtHb1HtzD5XIQuiT4jmBK7rWmmMSC10doSATjPo755_HhD8kAnTm3xjiM4oifogElAodckCH6ejfVpgbrJ0a2kHuvcjkNHpYZG996E8vG3qJRRv-CdaXRfapNI21bqgqcVxjrJd_SrsB_ggZ0Drr1EqiqrpLWm9VyVerVOTopZOXgYn9HaDGdfCQv_vzteZY8zn1JGW99KkiWYQjDOGA4UlxBIQgjSvGogFwEkDEaYir7VGY4yxnlWHGRYymB5ixiI3Sz622s-enAtWldOtWPkRpM51KBMQ8o4Vvyak92WQ152tiylnaT_kvpgesdIJVL16azuh-eEpxuZacH2ewPRO5t1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900642167</pqid></control><display><type>article</type><title>Polymer-Coated NaYF4:Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Jin, Jiefu ; Gu, Yan-Juan ; Man, Cornelia Wing-Yin ; Cheng, Jinping ; Xu, Zhenhua ; Zhang, Yue ; Wang, Huaishan ; Lee, Vien Hoi-Yi ; Cheng, Shuk Han ; Wong, Wing-Tak</creator><creatorcontrib>Jin, Jiefu ; Gu, Yan-Juan ; Man, Cornelia Wing-Yin ; Cheng, Jinping ; Xu, Zhenhua ; Zhang, Yue ; Wang, Huaishan ; Lee, Vien Hoi-Yi ; Cheng, Shuk Han ; Wong, Wing-Tak</creatorcontrib><description>Lanthanide-doped upconversion nanoparticles (UCNPs) are considered promising novel near-infrared (NIR) bioimaging agents with the characteristics of high contrast and high penetration depth. However, the interactions between charged UCNPs and mammalian cells have not been thoroughly studied, and the corresponding intracellular uptake pathways remain unclear. Herein, our research work involved the use of a hydrothermal method to synthesize polyvinylpyrrolidone-coated UCNPs (UCNP-PVP), and then a ligand exchange reaction was performed on UCNP-PVP, with the help of polyethylenimine (PEI) and poly(acrylic acid) (PAA), to generate UCNP-PEI and UCNP-PAA. These polymer-coated UCNPs demonstrated good dispersibility in aqueous medium, had the same elemental composition and crystal phase, shared similar TEM and dynamic light scattering (DLS) size distribution, and exhibited similar upconversion luminescence efficiency. However, the positively charged UCNP-PEI evinced greatly enhanced cellular uptake in comparison with its neutral or negative counterparts, as shown by multiphoton confocal microscopy and inductively coupled plasma mass spectrometry (ICP-MS) measurements. Meanwhile, we found that cationic UCNP-PEI can be effectively internalized mainly through the clathrin endocytic mechanism, as revealed by colocalization, chemical, and genetic inhibitor studies. This study elucidates the role of the surface polymer coatings in governing UCNP–cell interactions, and it is the first report on the endocytic mechanism of positively charged lanthanide-doped UCNPs. Furthermore, this study provides important guidance for the development of UCNPs as specific intracellular nanoprobes, allowing us to control the UCNP–cell interactions by tuning surface properties.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn201896m</identifier><identifier>PMID: 21905691</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chlorpromazine - pharmacology ; Clathrin - antagonists &amp; inhibitors ; Clathrin - deficiency ; Clathrin - genetics ; Coated Vesicles - drug effects ; Coated Vesicles - metabolism ; Endocytosis - drug effects ; Endocytosis - genetics ; Erbium - chemistry ; Fluorides - chemistry ; Gene Knockdown Techniques ; HeLa Cells ; Humans ; Ligands ; Luminescent Measurements ; Molecular Imaging - methods ; Nanoparticles - chemistry ; Nanoparticles - toxicity ; Polymers - chemistry ; Polymers - metabolism ; Polymers - toxicity ; Surface Properties ; Ytterbium - chemistry ; Yttrium - chemistry</subject><ispartof>ACS nano, 2011-10, Vol.5 (10), p.7838-7847</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn201896m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn201896m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21905691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Jiefu</creatorcontrib><creatorcontrib>Gu, Yan-Juan</creatorcontrib><creatorcontrib>Man, Cornelia Wing-Yin</creatorcontrib><creatorcontrib>Cheng, Jinping</creatorcontrib><creatorcontrib>Xu, Zhenhua</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Wang, Huaishan</creatorcontrib><creatorcontrib>Lee, Vien Hoi-Yi</creatorcontrib><creatorcontrib>Cheng, Shuk Han</creatorcontrib><creatorcontrib>Wong, Wing-Tak</creatorcontrib><title>Polymer-Coated NaYF4:Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Lanthanide-doped upconversion nanoparticles (UCNPs) are considered promising novel near-infrared (NIR) bioimaging agents with the characteristics of high contrast and high penetration depth. However, the interactions between charged UCNPs and mammalian cells have not been thoroughly studied, and the corresponding intracellular uptake pathways remain unclear. Herein, our research work involved the use of a hydrothermal method to synthesize polyvinylpyrrolidone-coated UCNPs (UCNP-PVP), and then a ligand exchange reaction was performed on UCNP-PVP, with the help of polyethylenimine (PEI) and poly(acrylic acid) (PAA), to generate UCNP-PEI and UCNP-PAA. These polymer-coated UCNPs demonstrated good dispersibility in aqueous medium, had the same elemental composition and crystal phase, shared similar TEM and dynamic light scattering (DLS) size distribution, and exhibited similar upconversion luminescence efficiency. However, the positively charged UCNP-PEI evinced greatly enhanced cellular uptake in comparison with its neutral or negative counterparts, as shown by multiphoton confocal microscopy and inductively coupled plasma mass spectrometry (ICP-MS) measurements. Meanwhile, we found that cationic UCNP-PEI can be effectively internalized mainly through the clathrin endocytic mechanism, as revealed by colocalization, chemical, and genetic inhibitor studies. This study elucidates the role of the surface polymer coatings in governing UCNP–cell interactions, and it is the first report on the endocytic mechanism of positively charged lanthanide-doped UCNPs. Furthermore, this study provides important guidance for the development of UCNPs as specific intracellular nanoprobes, allowing us to control the UCNP–cell interactions by tuning surface properties.</description><subject>Chlorpromazine - pharmacology</subject><subject>Clathrin - antagonists &amp; inhibitors</subject><subject>Clathrin - deficiency</subject><subject>Clathrin - genetics</subject><subject>Coated Vesicles - drug effects</subject><subject>Coated Vesicles - metabolism</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - genetics</subject><subject>Erbium - chemistry</subject><subject>Fluorides - chemistry</subject><subject>Gene Knockdown Techniques</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Ligands</subject><subject>Luminescent Measurements</subject><subject>Molecular Imaging - methods</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - toxicity</subject><subject>Polymers - chemistry</subject><subject>Polymers - metabolism</subject><subject>Polymers - toxicity</subject><subject>Surface Properties</subject><subject>Ytterbium - chemistry</subject><subject>Yttrium - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1Lw0AURQdRbK0u_AOSjbio0flIJhl3ElstFHVhwa7iZPJSU5KZOJMI_femtHb1HtzD5XIQuiT4jmBK7rWmmMSC10doSATjPo755_HhD8kAnTm3xjiM4oifogElAodckCH6ejfVpgbrJ0a2kHuvcjkNHpYZG996E8vG3qJRRv-CdaXRfapNI21bqgqcVxjrJd_SrsB_ggZ0Drr1EqiqrpLWm9VyVerVOTopZOXgYn9HaDGdfCQv_vzteZY8zn1JGW99KkiWYQjDOGA4UlxBIQgjSvGogFwEkDEaYir7VGY4yxnlWHGRYymB5ixiI3Sz622s-enAtWldOtWPkRpM51KBMQ8o4Vvyak92WQ152tiylnaT_kvpgesdIJVL16azuh-eEpxuZacH2ewPRO5t1A</recordid><startdate>20111025</startdate><enddate>20111025</enddate><creator>Jin, Jiefu</creator><creator>Gu, Yan-Juan</creator><creator>Man, Cornelia Wing-Yin</creator><creator>Cheng, Jinping</creator><creator>Xu, Zhenhua</creator><creator>Zhang, Yue</creator><creator>Wang, Huaishan</creator><creator>Lee, Vien Hoi-Yi</creator><creator>Cheng, Shuk Han</creator><creator>Wong, Wing-Tak</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20111025</creationdate><title>Polymer-Coated NaYF4:Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging</title><author>Jin, Jiefu ; Gu, Yan-Juan ; Man, Cornelia Wing-Yin ; Cheng, Jinping ; Xu, Zhenhua ; Zhang, Yue ; Wang, Huaishan ; Lee, Vien Hoi-Yi ; Cheng, Shuk Han ; Wong, Wing-Tak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a236t-291bb0e5584307c6cef9131cc67fed94eb32502a430ab0bd3260c69d0aae2d373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chlorpromazine - pharmacology</topic><topic>Clathrin - antagonists &amp; inhibitors</topic><topic>Clathrin - deficiency</topic><topic>Clathrin - genetics</topic><topic>Coated Vesicles - drug effects</topic><topic>Coated Vesicles - metabolism</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - genetics</topic><topic>Erbium - chemistry</topic><topic>Fluorides - chemistry</topic><topic>Gene Knockdown Techniques</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Ligands</topic><topic>Luminescent Measurements</topic><topic>Molecular Imaging - methods</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - toxicity</topic><topic>Polymers - chemistry</topic><topic>Polymers - metabolism</topic><topic>Polymers - toxicity</topic><topic>Surface Properties</topic><topic>Ytterbium - chemistry</topic><topic>Yttrium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Jiefu</creatorcontrib><creatorcontrib>Gu, Yan-Juan</creatorcontrib><creatorcontrib>Man, Cornelia Wing-Yin</creatorcontrib><creatorcontrib>Cheng, Jinping</creatorcontrib><creatorcontrib>Xu, Zhenhua</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Wang, Huaishan</creatorcontrib><creatorcontrib>Lee, Vien Hoi-Yi</creatorcontrib><creatorcontrib>Cheng, Shuk Han</creatorcontrib><creatorcontrib>Wong, Wing-Tak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Jiefu</au><au>Gu, Yan-Juan</au><au>Man, Cornelia Wing-Yin</au><au>Cheng, Jinping</au><au>Xu, Zhenhua</au><au>Zhang, Yue</au><au>Wang, Huaishan</au><au>Lee, Vien Hoi-Yi</au><au>Cheng, Shuk Han</au><au>Wong, Wing-Tak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer-Coated NaYF4:Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2011-10-25</date><risdate>2011</risdate><volume>5</volume><issue>10</issue><spage>7838</spage><epage>7847</epage><pages>7838-7847</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Lanthanide-doped upconversion nanoparticles (UCNPs) are considered promising novel near-infrared (NIR) bioimaging agents with the characteristics of high contrast and high penetration depth. However, the interactions between charged UCNPs and mammalian cells have not been thoroughly studied, and the corresponding intracellular uptake pathways remain unclear. Herein, our research work involved the use of a hydrothermal method to synthesize polyvinylpyrrolidone-coated UCNPs (UCNP-PVP), and then a ligand exchange reaction was performed on UCNP-PVP, with the help of polyethylenimine (PEI) and poly(acrylic acid) (PAA), to generate UCNP-PEI and UCNP-PAA. These polymer-coated UCNPs demonstrated good dispersibility in aqueous medium, had the same elemental composition and crystal phase, shared similar TEM and dynamic light scattering (DLS) size distribution, and exhibited similar upconversion luminescence efficiency. However, the positively charged UCNP-PEI evinced greatly enhanced cellular uptake in comparison with its neutral or negative counterparts, as shown by multiphoton confocal microscopy and inductively coupled plasma mass spectrometry (ICP-MS) measurements. Meanwhile, we found that cationic UCNP-PEI can be effectively internalized mainly through the clathrin endocytic mechanism, as revealed by colocalization, chemical, and genetic inhibitor studies. This study elucidates the role of the surface polymer coatings in governing UCNP–cell interactions, and it is the first report on the endocytic mechanism of positively charged lanthanide-doped UCNPs. Furthermore, this study provides important guidance for the development of UCNPs as specific intracellular nanoprobes, allowing us to control the UCNP–cell interactions by tuning surface properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21905691</pmid><doi>10.1021/nn201896m</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2011-10, Vol.5 (10), p.7838-7847
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_900642167
source MEDLINE; American Chemical Society Journals
subjects Chlorpromazine - pharmacology
Clathrin - antagonists & inhibitors
Clathrin - deficiency
Clathrin - genetics
Coated Vesicles - drug effects
Coated Vesicles - metabolism
Endocytosis - drug effects
Endocytosis - genetics
Erbium - chemistry
Fluorides - chemistry
Gene Knockdown Techniques
HeLa Cells
Humans
Ligands
Luminescent Measurements
Molecular Imaging - methods
Nanoparticles - chemistry
Nanoparticles - toxicity
Polymers - chemistry
Polymers - metabolism
Polymers - toxicity
Surface Properties
Ytterbium - chemistry
Yttrium - chemistry
title Polymer-Coated NaYF4:Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer-Coated%20NaYF4:Yb3+,%20Er3+%20Upconversion%20Nanoparticles%20for%20Charge-Dependent%20Cellular%20Imaging&rft.jtitle=ACS%20nano&rft.au=Jin,%20Jiefu&rft.date=2011-10-25&rft.volume=5&rft.issue=10&rft.spage=7838&rft.epage=7847&rft.pages=7838-7847&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn201896m&rft_dat=%3Cproquest_pubme%3E900642167%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900642167&rft_id=info:pmid/21905691&rfr_iscdi=true