Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen
Activation of molecular hydrogen is the first step in producing many important industrial chemicals that have so far required expensive noble-metal catalysts and thermal activation. We demonstrate here that aluminium doped with very small amounts of titanium can activate molecular hydrogen at temper...
Gespeichert in:
Veröffentlicht in: | Nature materials 2011-11, Vol.10 (11), p.884-889 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 889 |
---|---|
container_issue | 11 |
container_start_page | 884 |
container_title | Nature materials |
container_volume | 10 |
creator | Chopra, Irinder S. Chaudhuri, Santanu Veyan, Jean François Chabal, Yves J. |
description | Activation of molecular hydrogen is the first step in producing many important industrial chemicals that have so far required expensive noble-metal catalysts and thermal activation. We demonstrate here that aluminium doped with very small amounts of titanium can activate molecular hydrogen at temperatures as low as 90 K. Using an approach that uses CO as a probe molecule, we identify the atomistic arrangement of the catalytically active sites containing Ti on Al(111) surfaces, combining infrared reflection–absorption spectroscopy and first-principles modelling. CO molecules, selectively adsorbed on catalytically active sites, form a complex with activated hydrogen that is removed at remarkably low temperatures (115 K; possibly as a molecule). These results provide the first direct evidence that Ti-doped Al can carry out the essential first step of molecular hydrogen activation under nearly barrierless conditions, thereby challenging the monopoly of noble metals in hydrogen activation.
Activation of molecular hydrogen is an important step for many applications such as fuel cells and ammonia synthesis, but has so far required high temperatures and expensive noble-metal catalysts. Aluminium doped with small amounts of titanium is now shown to activate molecular hydrogen at temperatures as low as 90 K. |
doi_str_mv | 10.1038/nmat3123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_900637413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>900637413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-fd76126c4048afc8488dd7b1e746064642800308f79004880fabd94cb8abb8133</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoVqvgE8jgRl2MJpk0k1lK8QaCG10PmUympuZSk4zSt-mz-GRGWy0oSBbnQL58h5wfgAMEzxAs2Lk1PBYIFxtgB5GS5oRSuLnqEcJ4AHZDmEKI0WhEt8EAoyohCO6A6UPvrbKTjOveKKt6kykbXcYz6xotcyMj17lWzzITPLXzEN8XnfPvC-3e8ijNTHoeey8zLqJ65VE5m7kuM05L0WuewKd5691E2j2w1XEd5P6qDsHj1eXD-Ca_u7--HV_c5aKANOZdW1KEqSCQMN4JRhhr27JBsiQUUkIJZhAWkHVlBRPCYMebtiKiYbxpGCqKITheemfevfQyxNqoIKTW3ErXhzo9o0VJvsiTf0kEMWYVQnCU0KNf6NSlzaV_JB-i6RC69gnvQvCyq2deGe7nyVR_BlV_B5XQw5Wvb4xsf8DvZBJwugRCurIT6dcD_8g-AGsPnrE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901616146</pqid></control><display><type>article</type><title>Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen</title><source>Nature Publishing Group</source><source>Alma/SFX Local Collection</source><creator>Chopra, Irinder S. ; Chaudhuri, Santanu ; Veyan, Jean François ; Chabal, Yves J.</creator><creatorcontrib>Chopra, Irinder S. ; Chaudhuri, Santanu ; Veyan, Jean François ; Chabal, Yves J.</creatorcontrib><description>Activation of molecular hydrogen is the first step in producing many important industrial chemicals that have so far required expensive noble-metal catalysts and thermal activation. We demonstrate here that aluminium doped with very small amounts of titanium can activate molecular hydrogen at temperatures as low as 90 K. Using an approach that uses CO as a probe molecule, we identify the atomistic arrangement of the catalytically active sites containing Ti on Al(111) surfaces, combining infrared reflection–absorption spectroscopy and first-principles modelling. CO molecules, selectively adsorbed on catalytically active sites, form a complex with activated hydrogen that is removed at remarkably low temperatures (115 K; possibly as a molecule). These results provide the first direct evidence that Ti-doped Al can carry out the essential first step of molecular hydrogen activation under nearly barrierless conditions, thereby challenging the monopoly of noble metals in hydrogen activation.
Activation of molecular hydrogen is an important step for many applications such as fuel cells and ammonia synthesis, but has so far required high temperatures and expensive noble-metal catalysts. Aluminium doped with small amounts of titanium is now shown to activate molecular hydrogen at temperatures as low as 90 K.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3123</identifier><identifier>PMID: 21946610</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/544 ; 639/301/299 ; Absorption spectroscopy ; Activation ; Aluminium ; Aluminum ; Biomaterials ; Carbon monoxide ; Catalysis ; Catalysts ; Chemistry and Materials Science ; Condensed Matter Physics ; Hydrogen ; Infrared ; Low temperature ; Low temperature physics ; Materials Science ; Metals ; Nanotechnology ; Optical and Electronic Materials ; Titanium</subject><ispartof>Nature materials, 2011-11, Vol.10 (11), p.884-889</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-fd76126c4048afc8488dd7b1e746064642800308f79004880fabd94cb8abb8133</citedby><cites>FETCH-LOGICAL-c306t-fd76126c4048afc8488dd7b1e746064642800308f79004880fabd94cb8abb8133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21946610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chopra, Irinder S.</creatorcontrib><creatorcontrib>Chaudhuri, Santanu</creatorcontrib><creatorcontrib>Veyan, Jean François</creatorcontrib><creatorcontrib>Chabal, Yves J.</creatorcontrib><title>Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Activation of molecular hydrogen is the first step in producing many important industrial chemicals that have so far required expensive noble-metal catalysts and thermal activation. We demonstrate here that aluminium doped with very small amounts of titanium can activate molecular hydrogen at temperatures as low as 90 K. Using an approach that uses CO as a probe molecule, we identify the atomistic arrangement of the catalytically active sites containing Ti on Al(111) surfaces, combining infrared reflection–absorption spectroscopy and first-principles modelling. CO molecules, selectively adsorbed on catalytically active sites, form a complex with activated hydrogen that is removed at remarkably low temperatures (115 K; possibly as a molecule). These results provide the first direct evidence that Ti-doped Al can carry out the essential first step of molecular hydrogen activation under nearly barrierless conditions, thereby challenging the monopoly of noble metals in hydrogen activation.
Activation of molecular hydrogen is an important step for many applications such as fuel cells and ammonia synthesis, but has so far required high temperatures and expensive noble-metal catalysts. Aluminium doped with small amounts of titanium is now shown to activate molecular hydrogen at temperatures as low as 90 K.</description><subject>639/301/119/544</subject><subject>639/301/299</subject><subject>Absorption spectroscopy</subject><subject>Activation</subject><subject>Aluminium</subject><subject>Aluminum</subject><subject>Biomaterials</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Hydrogen</subject><subject>Infrared</subject><subject>Low temperature</subject><subject>Low temperature physics</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Titanium</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctKAzEUhoMoVqvgE8jgRl2MJpk0k1lK8QaCG10PmUympuZSk4zSt-mz-GRGWy0oSBbnQL58h5wfgAMEzxAs2Lk1PBYIFxtgB5GS5oRSuLnqEcJ4AHZDmEKI0WhEt8EAoyohCO6A6UPvrbKTjOveKKt6kykbXcYz6xotcyMj17lWzzITPLXzEN8XnfPvC-3e8ijNTHoeey8zLqJ65VE5m7kuM05L0WuewKd5691E2j2w1XEd5P6qDsHj1eXD-Ca_u7--HV_c5aKANOZdW1KEqSCQMN4JRhhr27JBsiQUUkIJZhAWkHVlBRPCYMebtiKiYbxpGCqKITheemfevfQyxNqoIKTW3ErXhzo9o0VJvsiTf0kEMWYVQnCU0KNf6NSlzaV_JB-i6RC69gnvQvCyq2deGe7nyVR_BlV_B5XQw5Wvb4xsf8DvZBJwugRCurIT6dcD_8g-AGsPnrE</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Chopra, Irinder S.</creator><creator>Chaudhuri, Santanu</creator><creator>Veyan, Jean François</creator><creator>Chabal, Yves J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7QF</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111101</creationdate><title>Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen</title><author>Chopra, Irinder S. ; Chaudhuri, Santanu ; Veyan, Jean François ; Chabal, Yves J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-fd76126c4048afc8488dd7b1e746064642800308f79004880fabd94cb8abb8133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/119/544</topic><topic>639/301/299</topic><topic>Absorption spectroscopy</topic><topic>Activation</topic><topic>Aluminium</topic><topic>Aluminum</topic><topic>Biomaterials</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Hydrogen</topic><topic>Infrared</topic><topic>Low temperature</topic><topic>Low temperature physics</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chopra, Irinder S.</creatorcontrib><creatorcontrib>Chaudhuri, Santanu</creatorcontrib><creatorcontrib>Veyan, Jean François</creatorcontrib><creatorcontrib>Chabal, Yves J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chopra, Irinder S.</au><au>Chaudhuri, Santanu</au><au>Veyan, Jean François</au><au>Chabal, Yves J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>10</volume><issue>11</issue><spage>884</spage><epage>889</epage><pages>884-889</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Activation of molecular hydrogen is the first step in producing many important industrial chemicals that have so far required expensive noble-metal catalysts and thermal activation. We demonstrate here that aluminium doped with very small amounts of titanium can activate molecular hydrogen at temperatures as low as 90 K. Using an approach that uses CO as a probe molecule, we identify the atomistic arrangement of the catalytically active sites containing Ti on Al(111) surfaces, combining infrared reflection–absorption spectroscopy and first-principles modelling. CO molecules, selectively adsorbed on catalytically active sites, form a complex with activated hydrogen that is removed at remarkably low temperatures (115 K; possibly as a molecule). These results provide the first direct evidence that Ti-doped Al can carry out the essential first step of molecular hydrogen activation under nearly barrierless conditions, thereby challenging the monopoly of noble metals in hydrogen activation.
Activation of molecular hydrogen is an important step for many applications such as fuel cells and ammonia synthesis, but has so far required high temperatures and expensive noble-metal catalysts. Aluminium doped with small amounts of titanium is now shown to activate molecular hydrogen at temperatures as low as 90 K.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21946610</pmid><doi>10.1038/nmat3123</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2011-11, Vol.10 (11), p.884-889 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_900637413 |
source | Nature Publishing Group; Alma/SFX Local Collection |
subjects | 639/301/119/544 639/301/299 Absorption spectroscopy Activation Aluminium Aluminum Biomaterials Carbon monoxide Catalysis Catalysts Chemistry and Materials Science Condensed Matter Physics Hydrogen Infrared Low temperature Low temperature physics Materials Science Metals Nanotechnology Optical and Electronic Materials Titanium |
title | Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turning%20aluminium%20into%20a%20noble-metal-like%20catalyst%C2%A0for%C2%A0low-temperature%20activation%20of%20molecular%C2%A0hydrogen&rft.jtitle=Nature%20materials&rft.au=Chopra,%20Irinder%20S.&rft.date=2011-11-01&rft.volume=10&rft.issue=11&rft.spage=884&rft.epage=889&rft.pages=884-889&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3123&rft_dat=%3Cproquest_cross%3E900637413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901616146&rft_id=info:pmid/21946610&rfr_iscdi=true |