Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members
Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA‐D). Traditionally, the uninterrupte...
Gespeichert in:
Veröffentlicht in: | Journal of experimental zoology. Part B, Molecular and developmental evolution Molecular and developmental evolution, 2011-11, Vol.316B (7), p.515-525 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 7 |
container_start_page | 515 |
container_title | Journal of experimental zoology. Part B, Molecular and developmental evolution |
container_volume | 316B |
creator | Feiner, Nathalie Ericsson, Rolf Meyer, Axel Kuraku, Shigehiro |
description | Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA‐D). Traditionally, the uninterrupted Hox cluster (Hox1‐14) of the invertebrate chordate amphioxus was regarded as an archetype of the vertebrate Hox clusters. In contrast to Hox1‐13 that are globally regulated by the “Hox code” and are often phylogenetically conserved, vertebrate Hox14 members were only recently revealed to be present in an African lungfish, a coelacanth, chondrichthyans and a lamprey, and decoupled from the Hox code. In this study we performed a PCR‐based search of Hox14 members from diverse vertebrates, and identified one in the Australian lungfish, Neoceratodus forsteri. Based on a molecular phylogenetic analysis, this gene was designated NfHoxA14. Our real‐time RT‐PCR suggested its hindgut‐associated expression, previously observed also in cloudy catshark HoxD14 and lamprey Hox14α. It is likely that this altered expression scheme was established before the Hox cluster quadruplication, probably at the base of extant vertebrates. To investigate the origin of vertebrate Hox14, by including this sarcopterygian Hox14 member, we performed focused phylogenetic analyses on its relationship with other vertebrate posterior Hox PGs (Hox9‐13) as well as amphioxus posterior Hox genes. Our results confirmed the hypotheses previously proposed by other studies that vertebrate Hox14 does not have any amphioxus ortholog, and that none of 1‐to‐1 pairs of vertebrate and amphioxus posterior Hox genes, based on their relative location in the clusters, is orthologous. J. Exp. Zool. (Mol. Dev. Evol.) 316:515–525, 2011. © 2011 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jez.b.21426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_900636818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>900636818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5046-aee0d9e73c14675a4aa59bac269016bdf3588c819eaa0926ba043a75a558df9a3</originalsourceid><addsrcrecordid>eNp90M1LHDEYx_FQKvX11HvJrYUy65OZSWZyrGLXitgiiiKFkGSe2cbOyzbJqtu_3ujqHj0lgU9-hy8hHxlMGEC-f4v_J2aSszIX78gW4zzPODD-fn2HapNsh3CbsADOP5DNnNWM54Jvkd_neOeCi26Y0fgH6ejdzA10bJ9fd-gjGq8j0uPxgZXULKkbbLdonryLgXrsnI00aG_HeUS_nDk90B57gz7sko1WdwH3Xs4dcvn96OLwODv9Of1x-O00sxxKkWlEaCRWhWWlqLgutebSaJsLCUyYpi14XduaSdQaZC6MhrLQCXJeN63UxQ75vNqd-_HfAkNUvQsWu04POC6CkgCiEDWrk_zypkwRK4AydU3064paP4bgsVVz73rtl4qBegqvUnhl1HP4pD-9DC9Mj83avpZOgK3Avetw-daWOjm6eR3NVn9ciPiw_qP9XyWqouLq6myqTuTBtLr-JRUUj373nVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427004100</pqid></control><display><type>article</type><title>Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Feiner, Nathalie ; Ericsson, Rolf ; Meyer, Axel ; Kuraku, Shigehiro</creator><creatorcontrib>Feiner, Nathalie ; Ericsson, Rolf ; Meyer, Axel ; Kuraku, Shigehiro</creatorcontrib><description>Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA‐D). Traditionally, the uninterrupted Hox cluster (Hox1‐14) of the invertebrate chordate amphioxus was regarded as an archetype of the vertebrate Hox clusters. In contrast to Hox1‐13 that are globally regulated by the “Hox code” and are often phylogenetically conserved, vertebrate Hox14 members were only recently revealed to be present in an African lungfish, a coelacanth, chondrichthyans and a lamprey, and decoupled from the Hox code. In this study we performed a PCR‐based search of Hox14 members from diverse vertebrates, and identified one in the Australian lungfish, Neoceratodus forsteri. Based on a molecular phylogenetic analysis, this gene was designated NfHoxA14. Our real‐time RT‐PCR suggested its hindgut‐associated expression, previously observed also in cloudy catshark HoxD14 and lamprey Hox14α. It is likely that this altered expression scheme was established before the Hox cluster quadruplication, probably at the base of extant vertebrates. To investigate the origin of vertebrate Hox14, by including this sarcopterygian Hox14 member, we performed focused phylogenetic analyses on its relationship with other vertebrate posterior Hox PGs (Hox9‐13) as well as amphioxus posterior Hox genes. Our results confirmed the hypotheses previously proposed by other studies that vertebrate Hox14 does not have any amphioxus ortholog, and that none of 1‐to‐1 pairs of vertebrate and amphioxus posterior Hox genes, based on their relative location in the clusters, is orthologous. J. Exp. Zool. (Mol. Dev. Evol.) 316:515–525, 2011. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 1552-5007</identifier><identifier>ISSN: 1552-5015</identifier><identifier>EISSN: 1552-5015</identifier><identifier>DOI: 10.1002/jez.b.21426</identifier><identifier>PMID: 21815265</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Sequence ; Animals ; Australia ; Bilateria ; Branchiostoma lanceolatum ; Chondrichthyes ; Chordata ; Chordata, Nonvertebrate - genetics ; Evolution, Molecular ; Genes, Homeobox - genetics ; Humans ; Lampreys - genetics ; Marine ; Molecular Sequence Data ; Multigene Family - genetics ; Neoceratodus forsteri ; Petromyzontidae ; Phylogeny ; Vertebrates - genetics</subject><ispartof>Journal of experimental zoology. Part B, Molecular and developmental evolution, 2011-11, Vol.316B (7), p.515-525</ispartof><rights>2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5046-aee0d9e73c14675a4aa59bac269016bdf3588c819eaa0926ba043a75a558df9a3</citedby><cites>FETCH-LOGICAL-c5046-aee0d9e73c14675a4aa59bac269016bdf3588c819eaa0926ba043a75a558df9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjez.b.21426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjez.b.21426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21815265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feiner, Nathalie</creatorcontrib><creatorcontrib>Ericsson, Rolf</creatorcontrib><creatorcontrib>Meyer, Axel</creatorcontrib><creatorcontrib>Kuraku, Shigehiro</creatorcontrib><title>Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members</title><title>Journal of experimental zoology. Part B, Molecular and developmental evolution</title><addtitle>J. Exp. Zool</addtitle><description>Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA‐D). Traditionally, the uninterrupted Hox cluster (Hox1‐14) of the invertebrate chordate amphioxus was regarded as an archetype of the vertebrate Hox clusters. In contrast to Hox1‐13 that are globally regulated by the “Hox code” and are often phylogenetically conserved, vertebrate Hox14 members were only recently revealed to be present in an African lungfish, a coelacanth, chondrichthyans and a lamprey, and decoupled from the Hox code. In this study we performed a PCR‐based search of Hox14 members from diverse vertebrates, and identified one in the Australian lungfish, Neoceratodus forsteri. Based on a molecular phylogenetic analysis, this gene was designated NfHoxA14. Our real‐time RT‐PCR suggested its hindgut‐associated expression, previously observed also in cloudy catshark HoxD14 and lamprey Hox14α. It is likely that this altered expression scheme was established before the Hox cluster quadruplication, probably at the base of extant vertebrates. To investigate the origin of vertebrate Hox14, by including this sarcopterygian Hox14 member, we performed focused phylogenetic analyses on its relationship with other vertebrate posterior Hox PGs (Hox9‐13) as well as amphioxus posterior Hox genes. Our results confirmed the hypotheses previously proposed by other studies that vertebrate Hox14 does not have any amphioxus ortholog, and that none of 1‐to‐1 pairs of vertebrate and amphioxus posterior Hox genes, based on their relative location in the clusters, is orthologous. J. Exp. Zool. (Mol. Dev. Evol.) 316:515–525, 2011. © 2011 Wiley Periodicals, Inc.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Australia</subject><subject>Bilateria</subject><subject>Branchiostoma lanceolatum</subject><subject>Chondrichthyes</subject><subject>Chordata</subject><subject>Chordata, Nonvertebrate - genetics</subject><subject>Evolution, Molecular</subject><subject>Genes, Homeobox - genetics</subject><subject>Humans</subject><subject>Lampreys - genetics</subject><subject>Marine</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family - genetics</subject><subject>Neoceratodus forsteri</subject><subject>Petromyzontidae</subject><subject>Phylogeny</subject><subject>Vertebrates - genetics</subject><issn>1552-5007</issn><issn>1552-5015</issn><issn>1552-5015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M1LHDEYx_FQKvX11HvJrYUy65OZSWZyrGLXitgiiiKFkGSe2cbOyzbJqtu_3ujqHj0lgU9-hy8hHxlMGEC-f4v_J2aSszIX78gW4zzPODD-fn2HapNsh3CbsADOP5DNnNWM54Jvkd_neOeCi26Y0fgH6ejdzA10bJ9fd-gjGq8j0uPxgZXULKkbbLdonryLgXrsnI00aG_HeUS_nDk90B57gz7sko1WdwH3Xs4dcvn96OLwODv9Of1x-O00sxxKkWlEaCRWhWWlqLgutebSaJsLCUyYpi14XduaSdQaZC6MhrLQCXJeN63UxQ75vNqd-_HfAkNUvQsWu04POC6CkgCiEDWrk_zypkwRK4AydU3064paP4bgsVVz73rtl4qBegqvUnhl1HP4pD-9DC9Mj83avpZOgK3Avetw-daWOjm6eR3NVn9ciPiw_qP9XyWqouLq6myqTuTBtLr-JRUUj373nVk</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Feiner, Nathalie</creator><creator>Ericsson, Rolf</creator><creator>Meyer, Axel</creator><creator>Kuraku, Shigehiro</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20111115</creationdate><title>Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members</title><author>Feiner, Nathalie ; Ericsson, Rolf ; Meyer, Axel ; Kuraku, Shigehiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5046-aee0d9e73c14675a4aa59bac269016bdf3588c819eaa0926ba043a75a558df9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Australia</topic><topic>Bilateria</topic><topic>Branchiostoma lanceolatum</topic><topic>Chondrichthyes</topic><topic>Chordata</topic><topic>Chordata, Nonvertebrate - genetics</topic><topic>Evolution, Molecular</topic><topic>Genes, Homeobox - genetics</topic><topic>Humans</topic><topic>Lampreys - genetics</topic><topic>Marine</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family - genetics</topic><topic>Neoceratodus forsteri</topic><topic>Petromyzontidae</topic><topic>Phylogeny</topic><topic>Vertebrates - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feiner, Nathalie</creatorcontrib><creatorcontrib>Ericsson, Rolf</creatorcontrib><creatorcontrib>Meyer, Axel</creatorcontrib><creatorcontrib>Kuraku, Shigehiro</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental zoology. Part B, Molecular and developmental evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feiner, Nathalie</au><au>Ericsson, Rolf</au><au>Meyer, Axel</au><au>Kuraku, Shigehiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members</atitle><jtitle>Journal of experimental zoology. Part B, Molecular and developmental evolution</jtitle><addtitle>J. Exp. Zool</addtitle><date>2011-11-15</date><risdate>2011</risdate><volume>316B</volume><issue>7</issue><spage>515</spage><epage>525</epage><pages>515-525</pages><issn>1552-5007</issn><issn>1552-5015</issn><eissn>1552-5015</eissn><abstract>Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA‐D). Traditionally, the uninterrupted Hox cluster (Hox1‐14) of the invertebrate chordate amphioxus was regarded as an archetype of the vertebrate Hox clusters. In contrast to Hox1‐13 that are globally regulated by the “Hox code” and are often phylogenetically conserved, vertebrate Hox14 members were only recently revealed to be present in an African lungfish, a coelacanth, chondrichthyans and a lamprey, and decoupled from the Hox code. In this study we performed a PCR‐based search of Hox14 members from diverse vertebrates, and identified one in the Australian lungfish, Neoceratodus forsteri. Based on a molecular phylogenetic analysis, this gene was designated NfHoxA14. Our real‐time RT‐PCR suggested its hindgut‐associated expression, previously observed also in cloudy catshark HoxD14 and lamprey Hox14α. It is likely that this altered expression scheme was established before the Hox cluster quadruplication, probably at the base of extant vertebrates. To investigate the origin of vertebrate Hox14, by including this sarcopterygian Hox14 member, we performed focused phylogenetic analyses on its relationship with other vertebrate posterior Hox PGs (Hox9‐13) as well as amphioxus posterior Hox genes. Our results confirmed the hypotheses previously proposed by other studies that vertebrate Hox14 does not have any amphioxus ortholog, and that none of 1‐to‐1 pairs of vertebrate and amphioxus posterior Hox genes, based on their relative location in the clusters, is orthologous. J. Exp. Zool. (Mol. Dev. Evol.) 316:515–525, 2011. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21815265</pmid><doi>10.1002/jez.b.21426</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-5007 |
ispartof | Journal of experimental zoology. Part B, Molecular and developmental evolution, 2011-11, Vol.316B (7), p.515-525 |
issn | 1552-5007 1552-5015 1552-5015 |
language | eng |
recordid | cdi_proquest_miscellaneous_900636818 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Amino Acid Sequence Animals Australia Bilateria Branchiostoma lanceolatum Chondrichthyes Chordata Chordata, Nonvertebrate - genetics Evolution, Molecular Genes, Homeobox - genetics Humans Lampreys - genetics Marine Molecular Sequence Data Multigene Family - genetics Neoceratodus forsteri Petromyzontidae Phylogeny Vertebrates - genetics |
title | Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20origin%20of%20the%20vertebrate%20Hox14%20by%20including%20its%20relict%20sarcopterygian%20members&rft.jtitle=Journal%20of%20experimental%20zoology.%20Part%20B,%20Molecular%20and%20developmental%20evolution&rft.au=Feiner,%20Nathalie&rft.date=2011-11-15&rft.volume=316B&rft.issue=7&rft.spage=515&rft.epage=525&rft.pages=515-525&rft.issn=1552-5007&rft.eissn=1552-5015&rft_id=info:doi/10.1002/jez.b.21426&rft_dat=%3Cproquest_cross%3E900636818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427004100&rft_id=info:pmid/21815265&rfr_iscdi=true |