Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering

Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2011-12, Vol.99A (3), p.493-499
Hauptverfasser: McKeon-Fischer, K. D., Flagg, D. H., Freeman, J. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 3
container_start_page 493
container_title Journal of biomedical materials research. Part A
container_volume 99A
creator McKeon-Fischer, K. D.
Flagg, D. H.
Freeman, J. W.
description Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nanoactuating scaffold for skeletal muscle tissue replacement. This was then compared to electrospun PCL and PCL‐MWCNT scaffolds. All scaffolds displayed some conductivity; however, MWCNT incorporation increased the conductivity. Only the PCL‐MWCNT‐H actuated when stimulated with 15 and 20 V. The PCL, PCL‐MWCNT, and hydrogel only scaffolds demonstrated no reaction when 5, 8, 10, 15, and 20 V were applied. Thus, all components of the PCL‐MWCNT‐H scaffold are essential for movement. All three PCL‐containing scaffolds were biocompatible, but the PCL‐MWCNT‐H scaffolds displayed more multinucleated cells with actin interaction. After tensile testing, the MWCNT‐containing scaffolds had higher strength than the rat and pig skeletal muscle. Although the mechanical properties were higher than muscle, the PCL‐MWCNT‐H scaffold shows promise as a potential bioartificial nanoactuator for skeletal muscle. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.
doi_str_mv 10.1002/jbm.a.33116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_900634847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017973701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4976-24c9eb937306b52b215c6ae358cc3d41555f71281612ca29ca6a2758fb9186d33</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSNERUthxR55gyhqM43t2ImXdAQDaPiTQGVn3ThOcevYUzuhzdPwFLwGz4SnMy27rmxZ37nH95wse4aLGS4Kcnze9DOYUYoxf5DtYcZIXgrOHq7vpcgpEXw3exzjeYJ5wcijbJdggZOA7WW_5x6uDVikrVZD8HE1OrTydjr4-ydXsAreghq806-OUD_awVyBtbpFCkLjHXLg_DA2Oh4hcO2NEFSYrFEIlGmP1w-_jJssAqv8T29RVNB13rao8wHFi2Q7JPd-jMpqNJgYR420OzNO62Dc2ZNspwMb9dPtuZ99f_vm2_xdvvy8eD9_vcxVKSqek1IJ3Qha0YI3jDQEM8VBU1YrRdsyhcK6CpMac0wUEKGAA6lY3TUC17yldD97uZmbNr4cdRxkb6LS1oLTfoxSFAWnZV1WiTy4l8QFrkRFqwIn9HCDqhRsDLqTq2B6CFOC5Lo7mbqTIG-6S_Tz7eCx6XV7x96WlYAXWwBSirYL4JSJ_7n0uZJWInF4w10Zq6f7POWHk4-35vlGY-Kgr-80EC4kT8swefppIeny64_TL8taLug_mhzELg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017973701</pqid></control><display><type>article</type><title>Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>McKeon-Fischer, K. D. ; Flagg, D. H. ; Freeman, J. W.</creator><creatorcontrib>McKeon-Fischer, K. D. ; Flagg, D. H. ; Freeman, J. W.</creatorcontrib><description>Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nanoactuating scaffold for skeletal muscle tissue replacement. This was then compared to electrospun PCL and PCL‐MWCNT scaffolds. All scaffolds displayed some conductivity; however, MWCNT incorporation increased the conductivity. Only the PCL‐MWCNT‐H actuated when stimulated with 15 and 20 V. The PCL, PCL‐MWCNT, and hydrogel only scaffolds demonstrated no reaction when 5, 8, 10, 15, and 20 V were applied. Thus, all components of the PCL‐MWCNT‐H scaffold are essential for movement. All three PCL‐containing scaffolds were biocompatible, but the PCL‐MWCNT‐H scaffolds displayed more multinucleated cells with actin interaction. After tensile testing, the MWCNT‐containing scaffolds had higher strength than the rat and pig skeletal muscle. Although the mechanical properties were higher than muscle, the PCL‐MWCNT‐H scaffold shows promise as a potential bioartificial nanoactuator for skeletal muscle. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.33116</identifier><identifier>PMID: 21913315</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acrylic Resins - pharmacology ; Animals ; Biological and medical sciences ; Biotechnology ; Cell Proliferation - drug effects ; conductive ; Elastic Modulus - drug effects ; Electric Conductivity ; electrospinning ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; hydrogel ; Industrial applications and implications. Economical aspects ; Medical sciences ; Microscopy, Fluorescence ; Miscellaneous ; Muscle Cells - cytology ; Muscle Cells - drug effects ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - physiology ; MWCNTs ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; PCL ; Polyesters - pharmacology ; Polyvinyl Alcohol - pharmacology ; Rats ; Stress, Mechanical ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Sus scrofa ; Technology. Biomaterials. Equipments ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2011-12, Vol.99A (3), p.493-499</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4976-24c9eb937306b52b215c6ae358cc3d41555f71281612ca29ca6a2758fb9186d33</citedby><cites>FETCH-LOGICAL-c4976-24c9eb937306b52b215c6ae358cc3d41555f71281612ca29ca6a2758fb9186d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.33116$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.33116$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24734379$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21913315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKeon-Fischer, K. D.</creatorcontrib><creatorcontrib>Flagg, D. H.</creatorcontrib><creatorcontrib>Freeman, J. W.</creatorcontrib><title>Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nanoactuating scaffold for skeletal muscle tissue replacement. This was then compared to electrospun PCL and PCL‐MWCNT scaffolds. All scaffolds displayed some conductivity; however, MWCNT incorporation increased the conductivity. Only the PCL‐MWCNT‐H actuated when stimulated with 15 and 20 V. The PCL, PCL‐MWCNT, and hydrogel only scaffolds demonstrated no reaction when 5, 8, 10, 15, and 20 V were applied. Thus, all components of the PCL‐MWCNT‐H scaffold are essential for movement. All three PCL‐containing scaffolds were biocompatible, but the PCL‐MWCNT‐H scaffolds displayed more multinucleated cells with actin interaction. After tensile testing, the MWCNT‐containing scaffolds had higher strength than the rat and pig skeletal muscle. Although the mechanical properties were higher than muscle, the PCL‐MWCNT‐H scaffold shows promise as a potential bioartificial nanoactuator for skeletal muscle. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</description><subject>Acrylic Resins - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Proliferation - drug effects</subject><subject>conductive</subject><subject>Elastic Modulus - drug effects</subject><subject>Electric Conductivity</subject><subject>electrospinning</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>hydrogel</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Medical sciences</subject><subject>Microscopy, Fluorescence</subject><subject>Miscellaneous</subject><subject>Muscle Cells - cytology</subject><subject>Muscle Cells - drug effects</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - physiology</subject><subject>MWCNTs</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>PCL</subject><subject>Polyesters - pharmacology</subject><subject>Polyvinyl Alcohol - pharmacology</subject><subject>Rats</subject><subject>Stress, Mechanical</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Sus scrofa</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSNERUthxR55gyhqM43t2ImXdAQDaPiTQGVn3ThOcevYUzuhzdPwFLwGz4SnMy27rmxZ37nH95wse4aLGS4Kcnze9DOYUYoxf5DtYcZIXgrOHq7vpcgpEXw3exzjeYJ5wcijbJdggZOA7WW_5x6uDVikrVZD8HE1OrTydjr4-ydXsAreghq806-OUD_awVyBtbpFCkLjHXLg_DA2Oh4hcO2NEFSYrFEIlGmP1w-_jJssAqv8T29RVNB13rao8wHFi2Q7JPd-jMpqNJgYR420OzNO62Dc2ZNspwMb9dPtuZ99f_vm2_xdvvy8eD9_vcxVKSqek1IJ3Qha0YI3jDQEM8VBU1YrRdsyhcK6CpMac0wUEKGAA6lY3TUC17yldD97uZmbNr4cdRxkb6LS1oLTfoxSFAWnZV1WiTy4l8QFrkRFqwIn9HCDqhRsDLqTq2B6CFOC5Lo7mbqTIG-6S_Tz7eCx6XV7x96WlYAXWwBSirYL4JSJ_7n0uZJWInF4w10Zq6f7POWHk4-35vlGY-Kgr-80EC4kT8swefppIeny64_TL8taLug_mhzELg</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>McKeon-Fischer, K. D.</creator><creator>Flagg, D. H.</creator><creator>Freeman, J. W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering</title><author>McKeon-Fischer, K. D. ; Flagg, D. H. ; Freeman, J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4976-24c9eb937306b52b215c6ae358cc3d41555f71281612ca29ca6a2758fb9186d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrylic Resins - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Proliferation - drug effects</topic><topic>conductive</topic><topic>Elastic Modulus - drug effects</topic><topic>Electric Conductivity</topic><topic>electrospinning</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>hydrogel</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Medical sciences</topic><topic>Microscopy, Fluorescence</topic><topic>Miscellaneous</topic><topic>Muscle Cells - cytology</topic><topic>Muscle Cells - drug effects</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - physiology</topic><topic>MWCNTs</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>PCL</topic><topic>Polyesters - pharmacology</topic><topic>Polyvinyl Alcohol - pharmacology</topic><topic>Rats</topic><topic>Stress, Mechanical</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Sus scrofa</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKeon-Fischer, K. D.</creatorcontrib><creatorcontrib>Flagg, D. H.</creatorcontrib><creatorcontrib>Freeman, J. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKeon-Fischer, K. D.</au><au>Flagg, D. H.</au><au>Freeman, J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>99A</volume><issue>3</issue><spage>493</spage><epage>499</epage><pages>493-499</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nanoactuating scaffold for skeletal muscle tissue replacement. This was then compared to electrospun PCL and PCL‐MWCNT scaffolds. All scaffolds displayed some conductivity; however, MWCNT incorporation increased the conductivity. Only the PCL‐MWCNT‐H actuated when stimulated with 15 and 20 V. The PCL, PCL‐MWCNT, and hydrogel only scaffolds demonstrated no reaction when 5, 8, 10, 15, and 20 V were applied. Thus, all components of the PCL‐MWCNT‐H scaffold are essential for movement. All three PCL‐containing scaffolds were biocompatible, but the PCL‐MWCNT‐H scaffolds displayed more multinucleated cells with actin interaction. After tensile testing, the MWCNT‐containing scaffolds had higher strength than the rat and pig skeletal muscle. Although the mechanical properties were higher than muscle, the PCL‐MWCNT‐H scaffold shows promise as a potential bioartificial nanoactuator for skeletal muscle. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21913315</pmid><doi>10.1002/jbm.a.33116</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2011-12, Vol.99A (3), p.493-499
issn 1549-3296
1552-4965
1552-4965
language eng
recordid cdi_proquest_miscellaneous_900634847
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acrylic Resins - pharmacology
Animals
Biological and medical sciences
Biotechnology
Cell Proliferation - drug effects
conductive
Elastic Modulus - drug effects
Electric Conductivity
electrospinning
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
hydrogel
Industrial applications and implications. Economical aspects
Medical sciences
Microscopy, Fluorescence
Miscellaneous
Muscle Cells - cytology
Muscle Cells - drug effects
Muscle, Skeletal - drug effects
Muscle, Skeletal - physiology
MWCNTs
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - ultrastructure
PCL
Polyesters - pharmacology
Polyvinyl Alcohol - pharmacology
Rats
Stress, Mechanical
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Sus scrofa
Technology. Biomaterials. Equipments
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coaxial%20electrospun%20poly(%CE%B5-caprolactone),%20multiwalled%20carbon%20nanotubes,%20and%20polyacrylic%20acid/polyvinyl%20alcohol%20scaffold%20for%20skeletal%20muscle%20tissue%20engineering&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=McKeon-Fischer,%20K.%20D.&rft.date=2011-12-01&rft.volume=99A&rft.issue=3&rft.spage=493&rft.epage=499&rft.pages=493-499&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.33116&rft_dat=%3Cproquest_cross%3E1017973701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017973701&rft_id=info:pmid/21913315&rfr_iscdi=true