Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering
Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nan...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2011-12, Vol.99A (3), p.493-499 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | 3 |
container_start_page | 493 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 99A |
creator | McKeon-Fischer, K. D. Flagg, D. H. Freeman, J. W. |
description | Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nanoactuating scaffold for skeletal muscle tissue replacement. This was then compared to electrospun PCL and PCL‐MWCNT scaffolds. All scaffolds displayed some conductivity; however, MWCNT incorporation increased the conductivity. Only the PCL‐MWCNT‐H actuated when stimulated with 15 and 20 V. The PCL, PCL‐MWCNT, and hydrogel only scaffolds demonstrated no reaction when 5, 8, 10, 15, and 20 V were applied. Thus, all components of the PCL‐MWCNT‐H scaffold are essential for movement. All three PCL‐containing scaffolds were biocompatible, but the PCL‐MWCNT‐H scaffolds displayed more multinucleated cells with actin interaction. After tensile testing, the MWCNT‐containing scaffolds had higher strength than the rat and pig skeletal muscle. Although the mechanical properties were higher than muscle, the PCL‐MWCNT‐H scaffold shows promise as a potential bioartificial nanoactuator for skeletal muscle. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011. |
doi_str_mv | 10.1002/jbm.a.33116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_900634847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017973701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4976-24c9eb937306b52b215c6ae358cc3d41555f71281612ca29ca6a2758fb9186d33</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSNERUthxR55gyhqM43t2ImXdAQDaPiTQGVn3ThOcevYUzuhzdPwFLwGz4SnMy27rmxZ37nH95wse4aLGS4Kcnze9DOYUYoxf5DtYcZIXgrOHq7vpcgpEXw3exzjeYJ5wcijbJdggZOA7WW_5x6uDVikrVZD8HE1OrTydjr4-ydXsAreghq806-OUD_awVyBtbpFCkLjHXLg_DA2Oh4hcO2NEFSYrFEIlGmP1w-_jJssAqv8T29RVNB13rao8wHFi2Q7JPd-jMpqNJgYR420OzNO62Dc2ZNspwMb9dPtuZ99f_vm2_xdvvy8eD9_vcxVKSqek1IJ3Qha0YI3jDQEM8VBU1YrRdsyhcK6CpMac0wUEKGAA6lY3TUC17yldD97uZmbNr4cdRxkb6LS1oLTfoxSFAWnZV1WiTy4l8QFrkRFqwIn9HCDqhRsDLqTq2B6CFOC5Lo7mbqTIG-6S_Tz7eCx6XV7x96WlYAXWwBSirYL4JSJ_7n0uZJWInF4w10Zq6f7POWHk4-35vlGY-Kgr-80EC4kT8swefppIeny64_TL8taLug_mhzELg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017973701</pqid></control><display><type>article</type><title>Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>McKeon-Fischer, K. D. ; Flagg, D. H. ; Freeman, J. W.</creator><creatorcontrib>McKeon-Fischer, K. D. ; Flagg, D. H. ; Freeman, J. W.</creatorcontrib><description>Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nanoactuating scaffold for skeletal muscle tissue replacement. This was then compared to electrospun PCL and PCL‐MWCNT scaffolds. All scaffolds displayed some conductivity; however, MWCNT incorporation increased the conductivity. Only the PCL‐MWCNT‐H actuated when stimulated with 15 and 20 V. The PCL, PCL‐MWCNT, and hydrogel only scaffolds demonstrated no reaction when 5, 8, 10, 15, and 20 V were applied. Thus, all components of the PCL‐MWCNT‐H scaffold are essential for movement. All three PCL‐containing scaffolds were biocompatible, but the PCL‐MWCNT‐H scaffolds displayed more multinucleated cells with actin interaction. After tensile testing, the MWCNT‐containing scaffolds had higher strength than the rat and pig skeletal muscle. Although the mechanical properties were higher than muscle, the PCL‐MWCNT‐H scaffold shows promise as a potential bioartificial nanoactuator for skeletal muscle. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.33116</identifier><identifier>PMID: 21913315</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acrylic Resins - pharmacology ; Animals ; Biological and medical sciences ; Biotechnology ; Cell Proliferation - drug effects ; conductive ; Elastic Modulus - drug effects ; Electric Conductivity ; electrospinning ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; hydrogel ; Industrial applications and implications. Economical aspects ; Medical sciences ; Microscopy, Fluorescence ; Miscellaneous ; Muscle Cells - cytology ; Muscle Cells - drug effects ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - physiology ; MWCNTs ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; PCL ; Polyesters - pharmacology ; Polyvinyl Alcohol - pharmacology ; Rats ; Stress, Mechanical ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Sus scrofa ; Technology. Biomaterials. Equipments ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2011-12, Vol.99A (3), p.493-499</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4976-24c9eb937306b52b215c6ae358cc3d41555f71281612ca29ca6a2758fb9186d33</citedby><cites>FETCH-LOGICAL-c4976-24c9eb937306b52b215c6ae358cc3d41555f71281612ca29ca6a2758fb9186d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.33116$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.33116$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24734379$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21913315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKeon-Fischer, K. D.</creatorcontrib><creatorcontrib>Flagg, D. H.</creatorcontrib><creatorcontrib>Freeman, J. W.</creatorcontrib><title>Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nanoactuating scaffold for skeletal muscle tissue replacement. This was then compared to electrospun PCL and PCL‐MWCNT scaffolds. All scaffolds displayed some conductivity; however, MWCNT incorporation increased the conductivity. Only the PCL‐MWCNT‐H actuated when stimulated with 15 and 20 V. The PCL, PCL‐MWCNT, and hydrogel only scaffolds demonstrated no reaction when 5, 8, 10, 15, and 20 V were applied. Thus, all components of the PCL‐MWCNT‐H scaffold are essential for movement. All three PCL‐containing scaffolds were biocompatible, but the PCL‐MWCNT‐H scaffolds displayed more multinucleated cells with actin interaction. After tensile testing, the MWCNT‐containing scaffolds had higher strength than the rat and pig skeletal muscle. Although the mechanical properties were higher than muscle, the PCL‐MWCNT‐H scaffold shows promise as a potential bioartificial nanoactuator for skeletal muscle. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</description><subject>Acrylic Resins - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Proliferation - drug effects</subject><subject>conductive</subject><subject>Elastic Modulus - drug effects</subject><subject>Electric Conductivity</subject><subject>electrospinning</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>hydrogel</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Medical sciences</subject><subject>Microscopy, Fluorescence</subject><subject>Miscellaneous</subject><subject>Muscle Cells - cytology</subject><subject>Muscle Cells - drug effects</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - physiology</subject><subject>MWCNTs</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>PCL</subject><subject>Polyesters - pharmacology</subject><subject>Polyvinyl Alcohol - pharmacology</subject><subject>Rats</subject><subject>Stress, Mechanical</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Sus scrofa</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSNERUthxR55gyhqM43t2ImXdAQDaPiTQGVn3ThOcevYUzuhzdPwFLwGz4SnMy27rmxZ37nH95wse4aLGS4Kcnze9DOYUYoxf5DtYcZIXgrOHq7vpcgpEXw3exzjeYJ5wcijbJdggZOA7WW_5x6uDVikrVZD8HE1OrTydjr4-ydXsAreghq806-OUD_awVyBtbpFCkLjHXLg_DA2Oh4hcO2NEFSYrFEIlGmP1w-_jJssAqv8T29RVNB13rao8wHFi2Q7JPd-jMpqNJgYR420OzNO62Dc2ZNspwMb9dPtuZ99f_vm2_xdvvy8eD9_vcxVKSqek1IJ3Qha0YI3jDQEM8VBU1YrRdsyhcK6CpMac0wUEKGAA6lY3TUC17yldD97uZmbNr4cdRxkb6LS1oLTfoxSFAWnZV1WiTy4l8QFrkRFqwIn9HCDqhRsDLqTq2B6CFOC5Lo7mbqTIG-6S_Tz7eCx6XV7x96WlYAXWwBSirYL4JSJ_7n0uZJWInF4w10Zq6f7POWHk4-35vlGY-Kgr-80EC4kT8swefppIeny64_TL8taLug_mhzELg</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>McKeon-Fischer, K. D.</creator><creator>Flagg, D. H.</creator><creator>Freeman, J. W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering</title><author>McKeon-Fischer, K. D. ; Flagg, D. H. ; Freeman, J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4976-24c9eb937306b52b215c6ae358cc3d41555f71281612ca29ca6a2758fb9186d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrylic Resins - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Proliferation - drug effects</topic><topic>conductive</topic><topic>Elastic Modulus - drug effects</topic><topic>Electric Conductivity</topic><topic>electrospinning</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>hydrogel</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Medical sciences</topic><topic>Microscopy, Fluorescence</topic><topic>Miscellaneous</topic><topic>Muscle Cells - cytology</topic><topic>Muscle Cells - drug effects</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - physiology</topic><topic>MWCNTs</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>PCL</topic><topic>Polyesters - pharmacology</topic><topic>Polyvinyl Alcohol - pharmacology</topic><topic>Rats</topic><topic>Stress, Mechanical</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Sus scrofa</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKeon-Fischer, K. D.</creatorcontrib><creatorcontrib>Flagg, D. H.</creatorcontrib><creatorcontrib>Freeman, J. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKeon-Fischer, K. D.</au><au>Flagg, D. H.</au><au>Freeman, J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>99A</volume><issue>3</issue><spage>493</spage><epage>499</epage><pages>493-499</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>Skeletal muscle repair after injury usually results in scar tissue and decreased functionality. In this study, we coaxially electrospun poly(ε‐caprolactone), multiwalled carbon nanotubes, and a hydrogel consisting of polyvinyl alcohol and polyacrylic acid (PCL‐MWCNT‐H) to create a self‐contained nanoactuating scaffold for skeletal muscle tissue replacement. This was then compared to electrospun PCL and PCL‐MWCNT scaffolds. All scaffolds displayed some conductivity; however, MWCNT incorporation increased the conductivity. Only the PCL‐MWCNT‐H actuated when stimulated with 15 and 20 V. The PCL, PCL‐MWCNT, and hydrogel only scaffolds demonstrated no reaction when 5, 8, 10, 15, and 20 V were applied. Thus, all components of the PCL‐MWCNT‐H scaffold are essential for movement. All three PCL‐containing scaffolds were biocompatible, but the PCL‐MWCNT‐H scaffolds displayed more multinucleated cells with actin interaction. After tensile testing, the MWCNT‐containing scaffolds had higher strength than the rat and pig skeletal muscle. Although the mechanical properties were higher than muscle, the PCL‐MWCNT‐H scaffold shows promise as a potential bioartificial nanoactuator for skeletal muscle. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21913315</pmid><doi>10.1002/jbm.a.33116</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2011-12, Vol.99A (3), p.493-499 |
issn | 1549-3296 1552-4965 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_900634847 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acrylic Resins - pharmacology Animals Biological and medical sciences Biotechnology Cell Proliferation - drug effects conductive Elastic Modulus - drug effects Electric Conductivity electrospinning Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry hydrogel Industrial applications and implications. Economical aspects Medical sciences Microscopy, Fluorescence Miscellaneous Muscle Cells - cytology Muscle Cells - drug effects Muscle, Skeletal - drug effects Muscle, Skeletal - physiology MWCNTs Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure PCL Polyesters - pharmacology Polyvinyl Alcohol - pharmacology Rats Stress, Mechanical Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Sus scrofa Technology. Biomaterials. Equipments Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coaxial%20electrospun%20poly(%CE%B5-caprolactone),%20multiwalled%20carbon%20nanotubes,%20and%20polyacrylic%20acid/polyvinyl%20alcohol%20scaffold%20for%20skeletal%20muscle%20tissue%20engineering&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=McKeon-Fischer,%20K.%20D.&rft.date=2011-12-01&rft.volume=99A&rft.issue=3&rft.spage=493&rft.epage=499&rft.pages=493-499&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.33116&rft_dat=%3Cproquest_cross%3E1017973701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017973701&rft_id=info:pmid/21913315&rfr_iscdi=true |