The Free Energy Landscape Analysis of Protein (FIP35) Folding Dynamics

A fundamental problem in the analysis of protein folding and other complex reactions is the determination of the reaction free energy landscape. The current experimental techniques lack the necessary spatial and temporal resolution to construct such landscapes. The properties of the landscapes can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2011-10, Vol.115 (42), p.12315-12324
1. Verfasser: Krivov, Sergei V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12324
container_issue 42
container_start_page 12315
container_title The journal of physical chemistry. B
container_volume 115
creator Krivov, Sergei V
description A fundamental problem in the analysis of protein folding and other complex reactions is the determination of the reaction free energy landscape. The current experimental techniques lack the necessary spatial and temporal resolution to construct such landscapes. The properties of the landscapes can be probed only indirectly. Simulation, assuming that it reproduces the experimental dynamics, can provide the necessary spatial and temporal resolution. It is, arguably, the only way for direct rigorous construction of the quantitatively accurate free energy landscapes. Here, such landscape is constructed from the equilibrium folding simulation of FIP35 protein reported by Shaw et al. Science 2010, 330, 341–346. For the dynamics to be accurately described as diffusion on the free energy landscape, the choice of reaction coordinates is crucial. The reaction coordinate used here is such that the dynamics projected on it is diffusive, so the description is consistent and accurate. The obtained landscape suggests an alternative interpretation of the simulation, markedly different from that of Shaw et al. In particular, FIP35 is not an incipient downhill folder, it folds via a populated on-pathway intermediate separated by high free energy barriers; the high free energy barriers rather than landscape roughness are a major determinant of the rates for conformational transitions; the preexponential factor of folding kinetics 1/k 0 ∼ 10 ns rather than 1 μs.
doi_str_mv 10.1021/jp208585r
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_900628998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>900628998</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-8019eb0e2d2f6cbe3e06ffda952d0aa7c955660e556cb52a0ae5886f99e8ac2b3</originalsourceid><addsrcrecordid>eNp90E1PwjAYB_DGaATRg1_A9GKEw_RpR0t7JMiUhEQOeF667hmO7AVbdti3dwTkZDw8L4df_oc_IfcMnhlw9rLdcVBCCXdB-kxwCLqZXJ5-yUD2yI33WwAuuJLXpMeZBs656JNo_YU0coh0XqHbtHRpqtRbs0M6rUzR-tzTOqMrV-8xr-gwWqxCMaJRXaR5taGvbWXK3PpbcpWZwuPd6Q7IZzRfz96D5cfbYjZdBmbMwn2ggGlMAHnKM2kTDBFklqVGC56CMROrhZASsNs2EdyAQaGUzLRGZSxPwgF5OubuXP3doN_HZe4tFoWpsG58rAEkV1qrTg7_lWwiwrEKmTjQ0ZFaV3vvMIt3Li-Na2MG8aHg-FxwZx9OsU1SYnqWv4124PEIjPXxtm5c16L_I-gH3gd_oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753483158</pqid></control><display><type>article</type><title>The Free Energy Landscape Analysis of Protein (FIP35) Folding Dynamics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Krivov, Sergei V</creator><creatorcontrib>Krivov, Sergei V</creatorcontrib><description>A fundamental problem in the analysis of protein folding and other complex reactions is the determination of the reaction free energy landscape. The current experimental techniques lack the necessary spatial and temporal resolution to construct such landscapes. The properties of the landscapes can be probed only indirectly. Simulation, assuming that it reproduces the experimental dynamics, can provide the necessary spatial and temporal resolution. It is, arguably, the only way for direct rigorous construction of the quantitatively accurate free energy landscapes. Here, such landscape is constructed from the equilibrium folding simulation of FIP35 protein reported by Shaw et al. Science 2010, 330, 341–346. For the dynamics to be accurately described as diffusion on the free energy landscape, the choice of reaction coordinates is crucial. The reaction coordinate used here is such that the dynamics projected on it is diffusive, so the description is consistent and accurate. The obtained landscape suggests an alternative interpretation of the simulation, markedly different from that of Shaw et al. In particular, FIP35 is not an incipient downhill folder, it folds via a populated on-pathway intermediate separated by high free energy barriers; the high free energy barriers rather than landscape roughness are a major determinant of the rates for conformational transitions; the preexponential factor of folding kinetics 1/k 0 ∼ 10 ns rather than 1 μs.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp208585r</identifier><identifier>PMID: 21902225</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biophysical Chemistry ; Construction ; Diffusion ; Dynamics ; Folding ; Free energy ; Kinetics ; Landscapes ; Protein Folding ; Proteins ; Proteins - chemistry ; Proteins - metabolism ; Simulation ; Temperature ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2011-10, Vol.115 (42), p.12315-12324</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-8019eb0e2d2f6cbe3e06ffda952d0aa7c955660e556cb52a0ae5886f99e8ac2b3</citedby><cites>FETCH-LOGICAL-a413t-8019eb0e2d2f6cbe3e06ffda952d0aa7c955660e556cb52a0ae5886f99e8ac2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp208585r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp208585r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21902225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krivov, Sergei V</creatorcontrib><title>The Free Energy Landscape Analysis of Protein (FIP35) Folding Dynamics</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A fundamental problem in the analysis of protein folding and other complex reactions is the determination of the reaction free energy landscape. The current experimental techniques lack the necessary spatial and temporal resolution to construct such landscapes. The properties of the landscapes can be probed only indirectly. Simulation, assuming that it reproduces the experimental dynamics, can provide the necessary spatial and temporal resolution. It is, arguably, the only way for direct rigorous construction of the quantitatively accurate free energy landscapes. Here, such landscape is constructed from the equilibrium folding simulation of FIP35 protein reported by Shaw et al. Science 2010, 330, 341–346. For the dynamics to be accurately described as diffusion on the free energy landscape, the choice of reaction coordinates is crucial. The reaction coordinate used here is such that the dynamics projected on it is diffusive, so the description is consistent and accurate. The obtained landscape suggests an alternative interpretation of the simulation, markedly different from that of Shaw et al. In particular, FIP35 is not an incipient downhill folder, it folds via a populated on-pathway intermediate separated by high free energy barriers; the high free energy barriers rather than landscape roughness are a major determinant of the rates for conformational transitions; the preexponential factor of folding kinetics 1/k 0 ∼ 10 ns rather than 1 μs.</description><subject>B: Biophysical Chemistry</subject><subject>Construction</subject><subject>Diffusion</subject><subject>Dynamics</subject><subject>Folding</subject><subject>Free energy</subject><subject>Kinetics</subject><subject>Landscapes</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Simulation</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1PwjAYB_DGaATRg1_A9GKEw_RpR0t7JMiUhEQOeF667hmO7AVbdti3dwTkZDw8L4df_oc_IfcMnhlw9rLdcVBCCXdB-kxwCLqZXJ5-yUD2yI33WwAuuJLXpMeZBs656JNo_YU0coh0XqHbtHRpqtRbs0M6rUzR-tzTOqMrV-8xr-gwWqxCMaJRXaR5taGvbWXK3PpbcpWZwuPd6Q7IZzRfz96D5cfbYjZdBmbMwn2ggGlMAHnKM2kTDBFklqVGC56CMROrhZASsNs2EdyAQaGUzLRGZSxPwgF5OubuXP3doN_HZe4tFoWpsG58rAEkV1qrTg7_lWwiwrEKmTjQ0ZFaV3vvMIt3Li-Na2MG8aHg-FxwZx9OsU1SYnqWv4124PEIjPXxtm5c16L_I-gH3gd_oQ</recordid><startdate>20111027</startdate><enddate>20111027</enddate><creator>Krivov, Sergei V</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111027</creationdate><title>The Free Energy Landscape Analysis of Protein (FIP35) Folding Dynamics</title><author>Krivov, Sergei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-8019eb0e2d2f6cbe3e06ffda952d0aa7c955660e556cb52a0ae5886f99e8ac2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>B: Biophysical Chemistry</topic><topic>Construction</topic><topic>Diffusion</topic><topic>Dynamics</topic><topic>Folding</topic><topic>Free energy</topic><topic>Kinetics</topic><topic>Landscapes</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Simulation</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krivov, Sergei V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krivov, Sergei V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Free Energy Landscape Analysis of Protein (FIP35) Folding Dynamics</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2011-10-27</date><risdate>2011</risdate><volume>115</volume><issue>42</issue><spage>12315</spage><epage>12324</epage><pages>12315-12324</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A fundamental problem in the analysis of protein folding and other complex reactions is the determination of the reaction free energy landscape. The current experimental techniques lack the necessary spatial and temporal resolution to construct such landscapes. The properties of the landscapes can be probed only indirectly. Simulation, assuming that it reproduces the experimental dynamics, can provide the necessary spatial and temporal resolution. It is, arguably, the only way for direct rigorous construction of the quantitatively accurate free energy landscapes. Here, such landscape is constructed from the equilibrium folding simulation of FIP35 protein reported by Shaw et al. Science 2010, 330, 341–346. For the dynamics to be accurately described as diffusion on the free energy landscape, the choice of reaction coordinates is crucial. The reaction coordinate used here is such that the dynamics projected on it is diffusive, so the description is consistent and accurate. The obtained landscape suggests an alternative interpretation of the simulation, markedly different from that of Shaw et al. In particular, FIP35 is not an incipient downhill folder, it folds via a populated on-pathway intermediate separated by high free energy barriers; the high free energy barriers rather than landscape roughness are a major determinant of the rates for conformational transitions; the preexponential factor of folding kinetics 1/k 0 ∼ 10 ns rather than 1 μs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21902225</pmid><doi>10.1021/jp208585r</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2011-10, Vol.115 (42), p.12315-12324
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_900628998
source MEDLINE; ACS Publications
subjects B: Biophysical Chemistry
Construction
Diffusion
Dynamics
Folding
Free energy
Kinetics
Landscapes
Protein Folding
Proteins
Proteins - chemistry
Proteins - metabolism
Simulation
Temperature
Thermodynamics
title The Free Energy Landscape Analysis of Protein (FIP35) Folding Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Free%20Energy%20Landscape%20Analysis%20of%20Protein%20(FIP35)%20Folding%20Dynamics&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Krivov,%20Sergei%20V&rft.date=2011-10-27&rft.volume=115&rft.issue=42&rft.spage=12315&rft.epage=12324&rft.pages=12315-12324&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp208585r&rft_dat=%3Cproquest_cross%3E900628998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753483158&rft_id=info:pmid/21902225&rfr_iscdi=true