Attenuation of ionic interactions profoundly lowers the kinetic thermal stability of Pyrococcus furiosus triosephosphate isomerase

We investigate here the high structural stability of Pyrococcus furiosus triosephosphate isomerase (PfuTIM) by exploring the effects – upon the protein's structure and kinetic thermal stability – of modulation of its ionic interactions through pH variations, and mutations. PfuTIM shows comparab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2009-06, Vol.1794 (6), p.905-912
Hauptverfasser: Chandrayan, Sanjeev Kumar, Guptasarma, Purnananda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 912
container_issue 6
container_start_page 905
container_title Biochimica et biophysica acta
container_volume 1794
creator Chandrayan, Sanjeev Kumar
Guptasarma, Purnananda
description We investigate here the high structural stability of Pyrococcus furiosus triosephosphate isomerase (PfuTIM) by exploring the effects – upon the protein's structure and kinetic thermal stability – of modulation of its ionic interactions through pH variations, and mutations. PfuTIM shows comparable structural contents at pH 3.0, 7.0 and 10.0. However, at pH 3.0, subtle changes are seen in the protein's surface hydrophobicity and association status, and its kinetic thermal stability is profoundly reduced (as evidenced by its facile heat- and cold-mediated denaturation, characterized by a high degree of hysteresis and irreversibility). Increase in ionic strength through addition of salt counters the reduction of stability, and reversal of pH facilitates partial refolding. Further, a mutated form of PfuTIM (mPfuTIM) lacking 4 key charged residues involved in ionic interactions displays a structural content identical to PfuTIM but profound reduction in kinetic stability to thermal and chemical denaturation, as well as evidence of partial unfolding at temperatures between 90 °C and 100 °C, unlike PfuTIM. We conclude, therefore, that ionic interactions (which are known to determine protein thermodynamic stability) can also contribute significantly to protein kinetic thermal stability.
doi_str_mv 10.1016/j.bbapap.2009.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899171194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570963909000545</els_id><sourcerecordid>20672441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-95271e074be66a87b507b5c37e284430f0d938cd944dfb914de226beb321a8983</originalsourceid><addsrcrecordid>eNp9kU2L1TAUhoMozjj6D0Sy0lXryUebZiMMg18woAtdhzQ95ebaNjVJHe7WX27KveBuFuF9Cc_5SF5CXjOoGbD2_bHue7vateYAugZRAzRPyDXrVFcx2cinxTcKKt0KfUVepHQE4KBU85xcMS2g1Q2_Jn9vc8Zls9mHhYaRFvGO-iVjtG6_THSNYQzbMkwnOoUHjInmA9JffsFc0OLjbCeasu395PNp7_L9FIMLzm2Jjlv0IRWTd8X1ENJ6sBmpT2EuQxK-JM9GOyV8ddEb8vPTxx93X6r7b5-_3t3eV05ykauyrmIISvbYtrZTfQPlOKGQd1IKGGHQonODlnIYe83kgJy3PfaCM9vpTtyQd-e-5UG_N0zZzD45nCa7YNiS6bRmijEtC_n2UZJDq7iUrIDyDLoYUoo4mjX62caTYWD2lMzRnFMye0oGhCkplbI3l_5bP-Pwv-gSSwE-nAEs__HHYzTJeVwcDj6iy2YI_vEJ_wAv1aiT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20672441</pqid></control><display><type>article</type><title>Attenuation of ionic interactions profoundly lowers the kinetic thermal stability of Pyrococcus furiosus triosephosphate isomerase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chandrayan, Sanjeev Kumar ; Guptasarma, Purnananda</creator><creatorcontrib>Chandrayan, Sanjeev Kumar ; Guptasarma, Purnananda</creatorcontrib><description>We investigate here the high structural stability of Pyrococcus furiosus triosephosphate isomerase (PfuTIM) by exploring the effects – upon the protein's structure and kinetic thermal stability – of modulation of its ionic interactions through pH variations, and mutations. PfuTIM shows comparable structural contents at pH 3.0, 7.0 and 10.0. However, at pH 3.0, subtle changes are seen in the protein's surface hydrophobicity and association status, and its kinetic thermal stability is profoundly reduced (as evidenced by its facile heat- and cold-mediated denaturation, characterized by a high degree of hysteresis and irreversibility). Increase in ionic strength through addition of salt counters the reduction of stability, and reversal of pH facilitates partial refolding. Further, a mutated form of PfuTIM (mPfuTIM) lacking 4 key charged residues involved in ionic interactions displays a structural content identical to PfuTIM but profound reduction in kinetic stability to thermal and chemical denaturation, as well as evidence of partial unfolding at temperatures between 90 °C and 100 °C, unlike PfuTIM. We conclude, therefore, that ionic interactions (which are known to determine protein thermodynamic stability) can also contribute significantly to protein kinetic thermal stability.</description><identifier>ISSN: 1570-9639</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1878-1454</identifier><identifier>DOI: 10.1016/j.bbapap.2009.03.005</identifier><identifier>PMID: 19306952</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Cold denaturation ; Enzyme Stability ; Hydrogen-Ion Concentration ; Kinetic stability ; Kinetics ; Mutagenesis ; Protein thermal stability ; Protein unfolding ; Pyrococcus furiosus ; Pyrococcus furiosus - enzymology ; Salt bridge and ionic interaction ; Spectrometry, Fluorescence ; Triose-Phosphate Isomerase - genetics ; Triose-Phosphate Isomerase - metabolism</subject><ispartof>Biochimica et biophysica acta, 2009-06, Vol.1794 (6), p.905-912</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-95271e074be66a87b507b5c37e284430f0d938cd944dfb914de226beb321a8983</citedby><cites>FETCH-LOGICAL-c423t-95271e074be66a87b507b5c37e284430f0d938cd944dfb914de226beb321a8983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbapap.2009.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19306952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrayan, Sanjeev Kumar</creatorcontrib><creatorcontrib>Guptasarma, Purnananda</creatorcontrib><title>Attenuation of ionic interactions profoundly lowers the kinetic thermal stability of Pyrococcus furiosus triosephosphate isomerase</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>We investigate here the high structural stability of Pyrococcus furiosus triosephosphate isomerase (PfuTIM) by exploring the effects – upon the protein's structure and kinetic thermal stability – of modulation of its ionic interactions through pH variations, and mutations. PfuTIM shows comparable structural contents at pH 3.0, 7.0 and 10.0. However, at pH 3.0, subtle changes are seen in the protein's surface hydrophobicity and association status, and its kinetic thermal stability is profoundly reduced (as evidenced by its facile heat- and cold-mediated denaturation, characterized by a high degree of hysteresis and irreversibility). Increase in ionic strength through addition of salt counters the reduction of stability, and reversal of pH facilitates partial refolding. Further, a mutated form of PfuTIM (mPfuTIM) lacking 4 key charged residues involved in ionic interactions displays a structural content identical to PfuTIM but profound reduction in kinetic stability to thermal and chemical denaturation, as well as evidence of partial unfolding at temperatures between 90 °C and 100 °C, unlike PfuTIM. We conclude, therefore, that ionic interactions (which are known to determine protein thermodynamic stability) can also contribute significantly to protein kinetic thermal stability.</description><subject>Cold denaturation</subject><subject>Enzyme Stability</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetic stability</subject><subject>Kinetics</subject><subject>Mutagenesis</subject><subject>Protein thermal stability</subject><subject>Protein unfolding</subject><subject>Pyrococcus furiosus</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Salt bridge and ionic interaction</subject><subject>Spectrometry, Fluorescence</subject><subject>Triose-Phosphate Isomerase - genetics</subject><subject>Triose-Phosphate Isomerase - metabolism</subject><issn>1570-9639</issn><issn>0006-3002</issn><issn>1878-1454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2L1TAUhoMozjj6D0Sy0lXryUebZiMMg18woAtdhzQ95ebaNjVJHe7WX27KveBuFuF9Cc_5SF5CXjOoGbD2_bHue7vateYAugZRAzRPyDXrVFcx2cinxTcKKt0KfUVepHQE4KBU85xcMS2g1Q2_Jn9vc8Zls9mHhYaRFvGO-iVjtG6_THSNYQzbMkwnOoUHjInmA9JffsFc0OLjbCeasu395PNp7_L9FIMLzm2Jjlv0IRWTd8X1ENJ6sBmpT2EuQxK-JM9GOyV8ddEb8vPTxx93X6r7b5-_3t3eV05ykauyrmIISvbYtrZTfQPlOKGQd1IKGGHQonODlnIYe83kgJy3PfaCM9vpTtyQd-e-5UG_N0zZzD45nCa7YNiS6bRmijEtC_n2UZJDq7iUrIDyDLoYUoo4mjX62caTYWD2lMzRnFMye0oGhCkplbI3l_5bP-Pwv-gSSwE-nAEs__HHYzTJeVwcDj6iy2YI_vEJ_wAv1aiT</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Chandrayan, Sanjeev Kumar</creator><creator>Guptasarma, Purnananda</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20090601</creationdate><title>Attenuation of ionic interactions profoundly lowers the kinetic thermal stability of Pyrococcus furiosus triosephosphate isomerase</title><author>Chandrayan, Sanjeev Kumar ; Guptasarma, Purnananda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-95271e074be66a87b507b5c37e284430f0d938cd944dfb914de226beb321a8983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cold denaturation</topic><topic>Enzyme Stability</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetic stability</topic><topic>Kinetics</topic><topic>Mutagenesis</topic><topic>Protein thermal stability</topic><topic>Protein unfolding</topic><topic>Pyrococcus furiosus</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Salt bridge and ionic interaction</topic><topic>Spectrometry, Fluorescence</topic><topic>Triose-Phosphate Isomerase - genetics</topic><topic>Triose-Phosphate Isomerase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrayan, Sanjeev Kumar</creatorcontrib><creatorcontrib>Guptasarma, Purnananda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrayan, Sanjeev Kumar</au><au>Guptasarma, Purnananda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attenuation of ionic interactions profoundly lowers the kinetic thermal stability of Pyrococcus furiosus triosephosphate isomerase</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>1794</volume><issue>6</issue><spage>905</spage><epage>912</epage><pages>905-912</pages><issn>1570-9639</issn><issn>0006-3002</issn><eissn>1878-1454</eissn><abstract>We investigate here the high structural stability of Pyrococcus furiosus triosephosphate isomerase (PfuTIM) by exploring the effects – upon the protein's structure and kinetic thermal stability – of modulation of its ionic interactions through pH variations, and mutations. PfuTIM shows comparable structural contents at pH 3.0, 7.0 and 10.0. However, at pH 3.0, subtle changes are seen in the protein's surface hydrophobicity and association status, and its kinetic thermal stability is profoundly reduced (as evidenced by its facile heat- and cold-mediated denaturation, characterized by a high degree of hysteresis and irreversibility). Increase in ionic strength through addition of salt counters the reduction of stability, and reversal of pH facilitates partial refolding. Further, a mutated form of PfuTIM (mPfuTIM) lacking 4 key charged residues involved in ionic interactions displays a structural content identical to PfuTIM but profound reduction in kinetic stability to thermal and chemical denaturation, as well as evidence of partial unfolding at temperatures between 90 °C and 100 °C, unlike PfuTIM. We conclude, therefore, that ionic interactions (which are known to determine protein thermodynamic stability) can also contribute significantly to protein kinetic thermal stability.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19306952</pmid><doi>10.1016/j.bbapap.2009.03.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-9639
ispartof Biochimica et biophysica acta, 2009-06, Vol.1794 (6), p.905-912
issn 1570-9639
0006-3002
1878-1454
language eng
recordid cdi_proquest_miscellaneous_899171194
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Cold denaturation
Enzyme Stability
Hydrogen-Ion Concentration
Kinetic stability
Kinetics
Mutagenesis
Protein thermal stability
Protein unfolding
Pyrococcus furiosus
Pyrococcus furiosus - enzymology
Salt bridge and ionic interaction
Spectrometry, Fluorescence
Triose-Phosphate Isomerase - genetics
Triose-Phosphate Isomerase - metabolism
title Attenuation of ionic interactions profoundly lowers the kinetic thermal stability of Pyrococcus furiosus triosephosphate isomerase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attenuation%20of%20ionic%20interactions%20profoundly%20lowers%20the%20kinetic%20thermal%20stability%20of%20Pyrococcus%20furiosus%20triosephosphate%20isomerase&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Chandrayan,%20Sanjeev%20Kumar&rft.date=2009-06-01&rft.volume=1794&rft.issue=6&rft.spage=905&rft.epage=912&rft.pages=905-912&rft.issn=1570-9639&rft.eissn=1878-1454&rft_id=info:doi/10.1016/j.bbapap.2009.03.005&rft_dat=%3Cproquest_cross%3E20672441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20672441&rft_id=info:pmid/19306952&rft_els_id=S1570963909000545&rfr_iscdi=true