Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling
The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2011-08, Vol.415 (4), p.3129-3134 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3134 |
---|---|
container_issue | 4 |
container_start_page | 3129 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 415 |
creator | Goumans, T. P. M. |
description | The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have been suggested to catalyze H2 formation in photon-dominated regions via chemisorbed hydrogen atoms. Hydrogenated PAHs are also implicated by the relative strengths of the infrared bands in protoplanetary nebulae, reflection nebulae and H ii regions. The activation barrier for the chemisorption of hydrogen atoms to graphite is prohibitively high (∼5000 K) at low to moderate temperatures for this reaction to occur classically. On PAHs, however, edge sites are more flexible and can accommodate the incoming hydrogen atom more easily, resulting in a lower barrier. Combined with a further rate enhancement via tunnelling, hydrogen chemisorption on PAH edges may become feasible in various regions in the interstellar medium. We present harmonic quantum transition state theory calculations, which incorporate tunnelling, on pyrene as a model PAH system. Indeed the relatively low (∼2000 K) classical activation barriers for hydrogen atom chemisorption on edge sites combined with strong tunnelling give rise to non-negligible rates of the order of 10−16-10−18 cm3 site−1 s−1 at temperatures as low as 40 K, with a large kinetic isotope effect k
H/k
D≈ 64, characteristic for tunnelling. At this temperature, chemisorption on the core of a PAH is orders of magnitude slower, ∼10−22.5 cm3 site−1 s−1 even for the lightest H isotope. The addition of H atoms to PAH edge sites via tunnelling could be efficient enough to contribute H-PAH formation, although other processes may be more important. |
doi_str_mv | 10.1111/j.1365-2966.2011.18924.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_899167154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2011.18924.x</oup_id><sourcerecordid>899167154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4864-9e83258926a99faa31948a0e09ac5cc45a309d88306f4c4f576e095e366ef8213</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxYMouFa_wyCITzPN_0leBCm2W6wraMXHcE0zbdbZZExmdOfbN9Mt-6AYLuTC_Z3D4V6EKoIbUt7ptiFMippqKRuKCWmI0pQ3-ydodRw8RSuMmahVS8hz9CLnLcaYMypX6HI936R460Jl79zO55iG0cdQlRpiP9vZ9t5WkOIOxtLcLbSF9COGXP32UI1TCK7vfbh9iZ510Gf36vE_Qd_OP1yfreurzxeXZ--vasuV5LV2ilFRMkrQugNgRHMF2GENVljLBTCsb5RiWHbc8k60ssyEY1K6TlHCTtDbg--Q4q_J5dGU2LZkgODilI3SmsiWCF7I13-R2zilUMIZpTjVjDFZoDePEGQLfZcgWJ_NkPwO0mwo57TVTBXu3YH743s3H-cEm-UMZmuWbZtl22Y5g3k4g9mbT5svD20xYAeDOA3_kdf_yIuqPqh8Ht3-qIP008iWtcJ831yYtWq_CrX5aK7ZPRGsm00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884293336</pqid></control><display><type>article</type><title>Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling</title><source>Access via Wiley Online Library</source><source>Oxford Journals Open Access Collection</source><creator>Goumans, T. P. M.</creator><creatorcontrib>Goumans, T. P. M.</creatorcontrib><description>The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have been suggested to catalyze H2 formation in photon-dominated regions via chemisorbed hydrogen atoms. Hydrogenated PAHs are also implicated by the relative strengths of the infrared bands in protoplanetary nebulae, reflection nebulae and H ii regions. The activation barrier for the chemisorption of hydrogen atoms to graphite is prohibitively high (∼5000 K) at low to moderate temperatures for this reaction to occur classically. On PAHs, however, edge sites are more flexible and can accommodate the incoming hydrogen atom more easily, resulting in a lower barrier. Combined with a further rate enhancement via tunnelling, hydrogen chemisorption on PAH edges may become feasible in various regions in the interstellar medium. We present harmonic quantum transition state theory calculations, which incorporate tunnelling, on pyrene as a model PAH system. Indeed the relatively low (∼2000 K) classical activation barriers for hydrogen atom chemisorption on edge sites combined with strong tunnelling give rise to non-negligible rates of the order of 10−16-10−18 cm3 site−1 s−1 at temperatures as low as 40 K, with a large kinetic isotope effect k
H/k
D≈ 64, characteristic for tunnelling. At this temperature, chemisorption on the core of a PAH is orders of magnitude slower, ∼10−22.5 cm3 site−1 s−1 even for the lightest H isotope. The addition of H atoms to PAH edge sites via tunnelling could be efficient enough to contribute H-PAH formation, although other processes may be more important.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2011.18924.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>astrochemistry ; Astronomy ; Astrophysics ; Atoms & subatomic particles ; Earth, ocean, space ; Exact sciences and technology ; Hydrogen ; ISM: atoms ; ISM: molecules ; molecular processes ; Polycyclic aromatic hydrocarbons</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2011-08, Vol.415 (4), p.3129-3134</ispartof><rights>2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011</rights><rights>2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4864-9e83258926a99faa31948a0e09ac5cc45a309d88306f4c4f576e095e366ef8213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2011.18924.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2011.18924.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24427938$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goumans, T. P. M.</creatorcontrib><title>Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have been suggested to catalyze H2 formation in photon-dominated regions via chemisorbed hydrogen atoms. Hydrogenated PAHs are also implicated by the relative strengths of the infrared bands in protoplanetary nebulae, reflection nebulae and H ii regions. The activation barrier for the chemisorption of hydrogen atoms to graphite is prohibitively high (∼5000 K) at low to moderate temperatures for this reaction to occur classically. On PAHs, however, edge sites are more flexible and can accommodate the incoming hydrogen atom more easily, resulting in a lower barrier. Combined with a further rate enhancement via tunnelling, hydrogen chemisorption on PAH edges may become feasible in various regions in the interstellar medium. We present harmonic quantum transition state theory calculations, which incorporate tunnelling, on pyrene as a model PAH system. Indeed the relatively low (∼2000 K) classical activation barriers for hydrogen atom chemisorption on edge sites combined with strong tunnelling give rise to non-negligible rates of the order of 10−16-10−18 cm3 site−1 s−1 at temperatures as low as 40 K, with a large kinetic isotope effect k
H/k
D≈ 64, characteristic for tunnelling. At this temperature, chemisorption on the core of a PAH is orders of magnitude slower, ∼10−22.5 cm3 site−1 s−1 even for the lightest H isotope. The addition of H atoms to PAH edge sites via tunnelling could be efficient enough to contribute H-PAH formation, although other processes may be more important.</description><subject>astrochemistry</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Atoms & subatomic particles</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrogen</subject><subject>ISM: atoms</subject><subject>ISM: molecules</subject><subject>molecular processes</subject><subject>Polycyclic aromatic hydrocarbons</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kV9rFDEUxYMouFa_wyCITzPN_0leBCm2W6wraMXHcE0zbdbZZExmdOfbN9Mt-6AYLuTC_Z3D4V6EKoIbUt7ptiFMippqKRuKCWmI0pQ3-ydodRw8RSuMmahVS8hz9CLnLcaYMypX6HI936R460Jl79zO55iG0cdQlRpiP9vZ9t5WkOIOxtLcLbSF9COGXP32UI1TCK7vfbh9iZ510Gf36vE_Qd_OP1yfreurzxeXZ--vasuV5LV2ilFRMkrQugNgRHMF2GENVljLBTCsb5RiWHbc8k60ssyEY1K6TlHCTtDbg--Q4q_J5dGU2LZkgODilI3SmsiWCF7I13-R2zilUMIZpTjVjDFZoDePEGQLfZcgWJ_NkPwO0mwo57TVTBXu3YH743s3H-cEm-UMZmuWbZtl22Y5g3k4g9mbT5svD20xYAeDOA3_kdf_yIuqPqh8Ht3-qIP008iWtcJ831yYtWq_CrX5aK7ZPRGsm00</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Goumans, T. P. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201108</creationdate><title>Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling</title><author>Goumans, T. P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4864-9e83258926a99faa31948a0e09ac5cc45a309d88306f4c4f576e095e366ef8213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>astrochemistry</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Atoms & subatomic particles</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrogen</topic><topic>ISM: atoms</topic><topic>ISM: molecules</topic><topic>molecular processes</topic><topic>Polycyclic aromatic hydrocarbons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goumans, T. P. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goumans, T. P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><date>2011-08</date><risdate>2011</risdate><volume>415</volume><issue>4</issue><spage>3129</spage><epage>3134</epage><pages>3129-3134</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have been suggested to catalyze H2 formation in photon-dominated regions via chemisorbed hydrogen atoms. Hydrogenated PAHs are also implicated by the relative strengths of the infrared bands in protoplanetary nebulae, reflection nebulae and H ii regions. The activation barrier for the chemisorption of hydrogen atoms to graphite is prohibitively high (∼5000 K) at low to moderate temperatures for this reaction to occur classically. On PAHs, however, edge sites are more flexible and can accommodate the incoming hydrogen atom more easily, resulting in a lower barrier. Combined with a further rate enhancement via tunnelling, hydrogen chemisorption on PAH edges may become feasible in various regions in the interstellar medium. We present harmonic quantum transition state theory calculations, which incorporate tunnelling, on pyrene as a model PAH system. Indeed the relatively low (∼2000 K) classical activation barriers for hydrogen atom chemisorption on edge sites combined with strong tunnelling give rise to non-negligible rates of the order of 10−16-10−18 cm3 site−1 s−1 at temperatures as low as 40 K, with a large kinetic isotope effect k
H/k
D≈ 64, characteristic for tunnelling. At this temperature, chemisorption on the core of a PAH is orders of magnitude slower, ∼10−22.5 cm3 site−1 s−1 even for the lightest H isotope. The addition of H atoms to PAH edge sites via tunnelling could be efficient enough to contribute H-PAH formation, although other processes may be more important.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2011.18924.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2011-08, Vol.415 (4), p.3129-3134 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_899167154 |
source | Access via Wiley Online Library; Oxford Journals Open Access Collection |
subjects | astrochemistry Astronomy Astrophysics Atoms & subatomic particles Earth, ocean, space Exact sciences and technology Hydrogen ISM: atoms ISM: molecules molecular processes Polycyclic aromatic hydrocarbons |
title | Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20chemisorption%20on%20polycyclic%20aromatic%20hydrocarbons%20via%20tunnelling&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Goumans,%20T.%20P.%20M.&rft.date=2011-08&rft.volume=415&rft.issue=4&rft.spage=3129&rft.epage=3134&rft.pages=3129-3134&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2011.18924.x&rft_dat=%3Cproquest_pasca%3E899167154%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884293336&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2011.18924.x&rfr_iscdi=true |