Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling

The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2011-08, Vol.415 (4), p.3129-3134
1. Verfasser: Goumans, T. P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3134
container_issue 4
container_start_page 3129
container_title Monthly notices of the Royal Astronomical Society
container_volume 415
creator Goumans, T. P. M.
description The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have been suggested to catalyze H2 formation in photon-dominated regions via chemisorbed hydrogen atoms. Hydrogenated PAHs are also implicated by the relative strengths of the infrared bands in protoplanetary nebulae, reflection nebulae and H ii regions. The activation barrier for the chemisorption of hydrogen atoms to graphite is prohibitively high (∼5000 K) at low to moderate temperatures for this reaction to occur classically. On PAHs, however, edge sites are more flexible and can accommodate the incoming hydrogen atom more easily, resulting in a lower barrier. Combined with a further rate enhancement via tunnelling, hydrogen chemisorption on PAH edges may become feasible in various regions in the interstellar medium. We present harmonic quantum transition state theory calculations, which incorporate tunnelling, on pyrene as a model PAH system. Indeed the relatively low (∼2000 K) classical activation barriers for hydrogen atom chemisorption on edge sites combined with strong tunnelling give rise to non-negligible rates of the order of 10−16-10−18 cm3 site−1 s−1 at temperatures as low as 40 K, with a large kinetic isotope effect k H/k D≈ 64, characteristic for tunnelling. At this temperature, chemisorption on the core of a PAH is orders of magnitude slower, ∼10−22.5 cm3 site−1 s−1 even for the lightest H isotope. The addition of H atoms to PAH edge sites via tunnelling could be efficient enough to contribute H-PAH formation, although other processes may be more important.
doi_str_mv 10.1111/j.1365-2966.2011.18924.x
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_899167154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2011.18924.x</oup_id><sourcerecordid>899167154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4864-9e83258926a99faa31948a0e09ac5cc45a309d88306f4c4f576e095e366ef8213</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxYMouFa_wyCITzPN_0leBCm2W6wraMXHcE0zbdbZZExmdOfbN9Mt-6AYLuTC_Z3D4V6EKoIbUt7ptiFMippqKRuKCWmI0pQ3-ydodRw8RSuMmahVS8hz9CLnLcaYMypX6HI936R460Jl79zO55iG0cdQlRpiP9vZ9t5WkOIOxtLcLbSF9COGXP32UI1TCK7vfbh9iZ510Gf36vE_Qd_OP1yfreurzxeXZ--vasuV5LV2ilFRMkrQugNgRHMF2GENVljLBTCsb5RiWHbc8k60ssyEY1K6TlHCTtDbg--Q4q_J5dGU2LZkgODilI3SmsiWCF7I13-R2zilUMIZpTjVjDFZoDePEGQLfZcgWJ_NkPwO0mwo57TVTBXu3YH743s3H-cEm-UMZmuWbZtl22Y5g3k4g9mbT5svD20xYAeDOA3_kdf_yIuqPqh8Ht3-qIP008iWtcJ831yYtWq_CrX5aK7ZPRGsm00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884293336</pqid></control><display><type>article</type><title>Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling</title><source>Access via Wiley Online Library</source><source>Oxford Journals Open Access Collection</source><creator>Goumans, T. P. M.</creator><creatorcontrib>Goumans, T. P. M.</creatorcontrib><description>The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have been suggested to catalyze H2 formation in photon-dominated regions via chemisorbed hydrogen atoms. Hydrogenated PAHs are also implicated by the relative strengths of the infrared bands in protoplanetary nebulae, reflection nebulae and H ii regions. The activation barrier for the chemisorption of hydrogen atoms to graphite is prohibitively high (∼5000 K) at low to moderate temperatures for this reaction to occur classically. On PAHs, however, edge sites are more flexible and can accommodate the incoming hydrogen atom more easily, resulting in a lower barrier. Combined with a further rate enhancement via tunnelling, hydrogen chemisorption on PAH edges may become feasible in various regions in the interstellar medium. We present harmonic quantum transition state theory calculations, which incorporate tunnelling, on pyrene as a model PAH system. Indeed the relatively low (∼2000 K) classical activation barriers for hydrogen atom chemisorption on edge sites combined with strong tunnelling give rise to non-negligible rates of the order of 10−16-10−18 cm3 site−1 s−1 at temperatures as low as 40 K, with a large kinetic isotope effect k H/k D≈ 64, characteristic for tunnelling. At this temperature, chemisorption on the core of a PAH is orders of magnitude slower, ∼10−22.5 cm3 site−1 s−1 even for the lightest H isotope. The addition of H atoms to PAH edge sites via tunnelling could be efficient enough to contribute H-PAH formation, although other processes may be more important.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2011.18924.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>astrochemistry ; Astronomy ; Astrophysics ; Atoms &amp; subatomic particles ; Earth, ocean, space ; Exact sciences and technology ; Hydrogen ; ISM: atoms ; ISM: molecules ; molecular processes ; Polycyclic aromatic hydrocarbons</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2011-08, Vol.415 (4), p.3129-3134</ispartof><rights>2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011</rights><rights>2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4864-9e83258926a99faa31948a0e09ac5cc45a309d88306f4c4f576e095e366ef8213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2011.18924.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2011.18924.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24427938$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goumans, T. P. M.</creatorcontrib><title>Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have been suggested to catalyze H2 formation in photon-dominated regions via chemisorbed hydrogen atoms. Hydrogenated PAHs are also implicated by the relative strengths of the infrared bands in protoplanetary nebulae, reflection nebulae and H ii regions. The activation barrier for the chemisorption of hydrogen atoms to graphite is prohibitively high (∼5000 K) at low to moderate temperatures for this reaction to occur classically. On PAHs, however, edge sites are more flexible and can accommodate the incoming hydrogen atom more easily, resulting in a lower barrier. Combined with a further rate enhancement via tunnelling, hydrogen chemisorption on PAH edges may become feasible in various regions in the interstellar medium. We present harmonic quantum transition state theory calculations, which incorporate tunnelling, on pyrene as a model PAH system. Indeed the relatively low (∼2000 K) classical activation barriers for hydrogen atom chemisorption on edge sites combined with strong tunnelling give rise to non-negligible rates of the order of 10−16-10−18 cm3 site−1 s−1 at temperatures as low as 40 K, with a large kinetic isotope effect k H/k D≈ 64, characteristic for tunnelling. At this temperature, chemisorption on the core of a PAH is orders of magnitude slower, ∼10−22.5 cm3 site−1 s−1 even for the lightest H isotope. The addition of H atoms to PAH edge sites via tunnelling could be efficient enough to contribute H-PAH formation, although other processes may be more important.</description><subject>astrochemistry</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Atoms &amp; subatomic particles</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrogen</subject><subject>ISM: atoms</subject><subject>ISM: molecules</subject><subject>molecular processes</subject><subject>Polycyclic aromatic hydrocarbons</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kV9rFDEUxYMouFa_wyCITzPN_0leBCm2W6wraMXHcE0zbdbZZExmdOfbN9Mt-6AYLuTC_Z3D4V6EKoIbUt7ptiFMippqKRuKCWmI0pQ3-ydodRw8RSuMmahVS8hz9CLnLcaYMypX6HI936R460Jl79zO55iG0cdQlRpiP9vZ9t5WkOIOxtLcLbSF9COGXP32UI1TCK7vfbh9iZ510Gf36vE_Qd_OP1yfreurzxeXZ--vasuV5LV2ilFRMkrQugNgRHMF2GENVljLBTCsb5RiWHbc8k60ssyEY1K6TlHCTtDbg--Q4q_J5dGU2LZkgODilI3SmsiWCF7I13-R2zilUMIZpTjVjDFZoDePEGQLfZcgWJ_NkPwO0mwo57TVTBXu3YH743s3H-cEm-UMZmuWbZtl22Y5g3k4g9mbT5svD20xYAeDOA3_kdf_yIuqPqh8Ht3-qIP008iWtcJ831yYtWq_CrX5aK7ZPRGsm00</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Goumans, T. P. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201108</creationdate><title>Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling</title><author>Goumans, T. P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4864-9e83258926a99faa31948a0e09ac5cc45a309d88306f4c4f576e095e366ef8213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>astrochemistry</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Atoms &amp; subatomic particles</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrogen</topic><topic>ISM: atoms</topic><topic>ISM: molecules</topic><topic>molecular processes</topic><topic>Polycyclic aromatic hydrocarbons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goumans, T. P. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goumans, T. P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><date>2011-08</date><risdate>2011</risdate><volume>415</volume><issue>4</issue><spage>3129</spage><epage>3134</epage><pages>3129-3134</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>The chemisorption of hydrogen atoms on polycyclic aromatic hydrocarbons (PAHs) is studied at low temperatures via quantum mechanical tunnelling through reaction barriers. PAHs are ubiquitous in the interstellar medium and may exist in various charge states as well as hydrogenation states. PAHs have been suggested to catalyze H2 formation in photon-dominated regions via chemisorbed hydrogen atoms. Hydrogenated PAHs are also implicated by the relative strengths of the infrared bands in protoplanetary nebulae, reflection nebulae and H ii regions. The activation barrier for the chemisorption of hydrogen atoms to graphite is prohibitively high (∼5000 K) at low to moderate temperatures for this reaction to occur classically. On PAHs, however, edge sites are more flexible and can accommodate the incoming hydrogen atom more easily, resulting in a lower barrier. Combined with a further rate enhancement via tunnelling, hydrogen chemisorption on PAH edges may become feasible in various regions in the interstellar medium. We present harmonic quantum transition state theory calculations, which incorporate tunnelling, on pyrene as a model PAH system. Indeed the relatively low (∼2000 K) classical activation barriers for hydrogen atom chemisorption on edge sites combined with strong tunnelling give rise to non-negligible rates of the order of 10−16-10−18 cm3 site−1 s−1 at temperatures as low as 40 K, with a large kinetic isotope effect k H/k D≈ 64, characteristic for tunnelling. At this temperature, chemisorption on the core of a PAH is orders of magnitude slower, ∼10−22.5 cm3 site−1 s−1 even for the lightest H isotope. The addition of H atoms to PAH edge sites via tunnelling could be efficient enough to contribute H-PAH formation, although other processes may be more important.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2011.18924.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2011-08, Vol.415 (4), p.3129-3134
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_899167154
source Access via Wiley Online Library; Oxford Journals Open Access Collection
subjects astrochemistry
Astronomy
Astrophysics
Atoms & subatomic particles
Earth, ocean, space
Exact sciences and technology
Hydrogen
ISM: atoms
ISM: molecules
molecular processes
Polycyclic aromatic hydrocarbons
title Hydrogen chemisorption on polycyclic aromatic hydrocarbons via tunnelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20chemisorption%20on%20polycyclic%20aromatic%20hydrocarbons%20via%20tunnelling&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Goumans,%20T.%20P.%20M.&rft.date=2011-08&rft.volume=415&rft.issue=4&rft.spage=3129&rft.epage=3134&rft.pages=3129-3134&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2011.18924.x&rft_dat=%3Cproquest_pasca%3E899167154%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884293336&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2011.18924.x&rfr_iscdi=true