Sulphur mustard degradation on zirconium doped Ti–Fe oxides

► New stechiometric materials for sulphur mustard degradation. ► High degree of degradation, more then 95% h −1. ► One-pot synthesis procedure. Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2011-09, Vol.192 (3), p.1491-1504
Hauptverfasser: Štengl, Václav, Grygar, Tomáš Matys, Opluštil, František, Němec, Tomáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1504
container_issue 3
container_start_page 1491
container_title Journal of hazardous materials
container_volume 192
creator Štengl, Václav
Grygar, Tomáš Matys
Opluštil, František
Němec, Tomáš
description ► New stechiometric materials for sulphur mustard degradation. ► High degree of degradation, more then 95% h −1. ► One-pot synthesis procedure. Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid–base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr 4+ dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr 4+ to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr 4+ doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.
doi_str_mv 10.1016/j.jhazmat.2011.06.069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899166344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389411008442</els_id><sourcerecordid>885910666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-570d2d4f8a2b33a67da856d681ba240894e49c811388b9cf598670acd3146b703</originalsourceid><addsrcrecordid>eNqF0c2KFDEQB_AgijuOPoLaF9FLj5XO90FEFleFBQ-7ew7VSXo3Q3-MSbfonnwH39AnMcOMenOhIJdfpYr6E_KUwoYCla-3m-0N3g44bxqgdAOylLlHVlQrVjPG5H2yAga8ZtrwE_Io5y0AUCX4Q3LSUKUECL0iby6WfnezpGpY8ozJVz5cJ_Q4x2msSt3G5KYxLkPlp13w1WX89ePnWaimb9GH_Jg86LDP4cnxXZOrs_eXpx_r888fPp2-O68d12yuhQLfeN5pbFrGUCqPWkgvNW2x4VAWDNw4TSnTujWuE0ZLBeg8o1y2CtiavDz8u0vTlyXk2Q4xu9D3OIZpyVYbQ6VknN8ttTAUZMFr8uq_kkpFG6klN4WKA3VpyjmFzu5SHDB9txTsPg27tcc07D4NC7LUvu_ZccTSDsH_7fpz_gJeHAFmh32XcHQx_3NcAOVKFPf84DqcLF6nYq4uyiRREjVcwX7U24MIJYavMSSbXQyjCz6m4Gbrp3jHsr8BBWiyzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671268649</pqid></control><display><type>article</type><title>Sulphur mustard degradation on zirconium doped Ti–Fe oxides</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Štengl, Václav ; Grygar, Tomáš Matys ; Opluštil, František ; Němec, Tomáš</creator><creatorcontrib>Štengl, Václav ; Grygar, Tomáš Matys ; Opluštil, František ; Němec, Tomáš</creatorcontrib><description>► New stechiometric materials for sulphur mustard degradation. ► High degree of degradation, more then 95% h −1. ► One-pot synthesis procedure. Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid–base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr 4+ dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr 4+ to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr 4+ doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.06.069</identifier><identifier>PMID: 21775058</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>adsorbents ; Adsorption ; Applied sciences ; aqueous solutions ; Chemical engineering ; Chemical Warfare ; Degradation ; Exact sciences and technology ; Ferric Compounds - chemistry ; ferric sulfate ; ferrihydrite ; goethite ; Homogeneous hydrolysis ; Hydrolysis ; hydroxides ; hydroxylation ; Iron ; Microscopy, Electron, Scanning - methods ; Mustard gas ; Mustard Gas - analysis ; Mustard Gas - chemistry ; Nanodispersive oxides ; Nanomaterials ; Nanostructure ; Nanotechnology - methods ; Oxides ; Oxides - chemistry ; Pollution ; porosity ; scanning electron microscopy ; Spectrophotometry, Infrared - methods ; spectroscopy ; sulfur ; surface area ; Surface chemistry ; Titanium ; Titanium - chemistry ; titration ; Urea ; Warfare agents ; Water Pollutants, Chemical - analysis ; Water Purification - methods ; X-radiation ; X-Ray Diffraction ; Zinc ; zirconium ; Zirconium - chemistry</subject><ispartof>Journal of hazardous materials, 2011-09, Vol.192 (3), p.1491-1504</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-570d2d4f8a2b33a67da856d681ba240894e49c811388b9cf598670acd3146b703</citedby><cites>FETCH-LOGICAL-c483t-570d2d4f8a2b33a67da856d681ba240894e49c811388b9cf598670acd3146b703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2011.06.069$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24501475$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21775058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Štengl, Václav</creatorcontrib><creatorcontrib>Grygar, Tomáš Matys</creatorcontrib><creatorcontrib>Opluštil, František</creatorcontrib><creatorcontrib>Němec, Tomáš</creatorcontrib><title>Sulphur mustard degradation on zirconium doped Ti–Fe oxides</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>► New stechiometric materials for sulphur mustard degradation. ► High degree of degradation, more then 95% h −1. ► One-pot synthesis procedure. Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid–base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr 4+ dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr 4+ to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr 4+ doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.</description><subject>adsorbents</subject><subject>Adsorption</subject><subject>Applied sciences</subject><subject>aqueous solutions</subject><subject>Chemical engineering</subject><subject>Chemical Warfare</subject><subject>Degradation</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - chemistry</subject><subject>ferric sulfate</subject><subject>ferrihydrite</subject><subject>goethite</subject><subject>Homogeneous hydrolysis</subject><subject>Hydrolysis</subject><subject>hydroxides</subject><subject>hydroxylation</subject><subject>Iron</subject><subject>Microscopy, Electron, Scanning - methods</subject><subject>Mustard gas</subject><subject>Mustard Gas - analysis</subject><subject>Mustard Gas - chemistry</subject><subject>Nanodispersive oxides</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Oxides</subject><subject>Oxides - chemistry</subject><subject>Pollution</subject><subject>porosity</subject><subject>scanning electron microscopy</subject><subject>Spectrophotometry, Infrared - methods</subject><subject>spectroscopy</subject><subject>sulfur</subject><subject>surface area</subject><subject>Surface chemistry</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>titration</subject><subject>Urea</subject><subject>Warfare agents</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Purification - methods</subject><subject>X-radiation</subject><subject>X-Ray Diffraction</subject><subject>Zinc</subject><subject>zirconium</subject><subject>Zirconium - chemistry</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c2KFDEQB_AgijuOPoLaF9FLj5XO90FEFleFBQ-7ew7VSXo3Q3-MSbfonnwH39AnMcOMenOhIJdfpYr6E_KUwoYCla-3m-0N3g44bxqgdAOylLlHVlQrVjPG5H2yAga8ZtrwE_Io5y0AUCX4Q3LSUKUECL0iby6WfnezpGpY8ozJVz5cJ_Q4x2msSt3G5KYxLkPlp13w1WX89ePnWaimb9GH_Jg86LDP4cnxXZOrs_eXpx_r888fPp2-O68d12yuhQLfeN5pbFrGUCqPWkgvNW2x4VAWDNw4TSnTujWuE0ZLBeg8o1y2CtiavDz8u0vTlyXk2Q4xu9D3OIZpyVYbQ6VknN8ttTAUZMFr8uq_kkpFG6klN4WKA3VpyjmFzu5SHDB9txTsPg27tcc07D4NC7LUvu_ZccTSDsH_7fpz_gJeHAFmh32XcHQx_3NcAOVKFPf84DqcLF6nYq4uyiRREjVcwX7U24MIJYavMSSbXQyjCz6m4Gbrp3jHsr8BBWiyzQ</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Štengl, Václav</creator><creator>Grygar, Tomáš Matys</creator><creator>Opluštil, František</creator><creator>Němec, Tomáš</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>SOI</scope></search><sort><creationdate>20110915</creationdate><title>Sulphur mustard degradation on zirconium doped Ti–Fe oxides</title><author>Štengl, Václav ; Grygar, Tomáš Matys ; Opluštil, František ; Němec, Tomáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-570d2d4f8a2b33a67da856d681ba240894e49c811388b9cf598670acd3146b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adsorbents</topic><topic>Adsorption</topic><topic>Applied sciences</topic><topic>aqueous solutions</topic><topic>Chemical engineering</topic><topic>Chemical Warfare</topic><topic>Degradation</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - chemistry</topic><topic>ferric sulfate</topic><topic>ferrihydrite</topic><topic>goethite</topic><topic>Homogeneous hydrolysis</topic><topic>Hydrolysis</topic><topic>hydroxides</topic><topic>hydroxylation</topic><topic>Iron</topic><topic>Microscopy, Electron, Scanning - methods</topic><topic>Mustard gas</topic><topic>Mustard Gas - analysis</topic><topic>Mustard Gas - chemistry</topic><topic>Nanodispersive oxides</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Oxides</topic><topic>Oxides - chemistry</topic><topic>Pollution</topic><topic>porosity</topic><topic>scanning electron microscopy</topic><topic>Spectrophotometry, Infrared - methods</topic><topic>spectroscopy</topic><topic>sulfur</topic><topic>surface area</topic><topic>Surface chemistry</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>titration</topic><topic>Urea</topic><topic>Warfare agents</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Purification - methods</topic><topic>X-radiation</topic><topic>X-Ray Diffraction</topic><topic>Zinc</topic><topic>zirconium</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Štengl, Václav</creatorcontrib><creatorcontrib>Grygar, Tomáš Matys</creatorcontrib><creatorcontrib>Opluštil, František</creatorcontrib><creatorcontrib>Němec, Tomáš</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Štengl, Václav</au><au>Grygar, Tomáš Matys</au><au>Opluštil, František</au><au>Němec, Tomáš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulphur mustard degradation on zirconium doped Ti–Fe oxides</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>192</volume><issue>3</issue><spage>1491</spage><epage>1504</epage><pages>1491-1504</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>► New stechiometric materials for sulphur mustard degradation. ► High degree of degradation, more then 95% h −1. ► One-pot synthesis procedure. Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid–base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr 4+ dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr 4+ to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr 4+ doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21775058</pmid><doi>10.1016/j.jhazmat.2011.06.069</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2011-09, Vol.192 (3), p.1491-1504
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_899166344
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects adsorbents
Adsorption
Applied sciences
aqueous solutions
Chemical engineering
Chemical Warfare
Degradation
Exact sciences and technology
Ferric Compounds - chemistry
ferric sulfate
ferrihydrite
goethite
Homogeneous hydrolysis
Hydrolysis
hydroxides
hydroxylation
Iron
Microscopy, Electron, Scanning - methods
Mustard gas
Mustard Gas - analysis
Mustard Gas - chemistry
Nanodispersive oxides
Nanomaterials
Nanostructure
Nanotechnology - methods
Oxides
Oxides - chemistry
Pollution
porosity
scanning electron microscopy
Spectrophotometry, Infrared - methods
spectroscopy
sulfur
surface area
Surface chemistry
Titanium
Titanium - chemistry
titration
Urea
Warfare agents
Water Pollutants, Chemical - analysis
Water Purification - methods
X-radiation
X-Ray Diffraction
Zinc
zirconium
Zirconium - chemistry
title Sulphur mustard degradation on zirconium doped Ti–Fe oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulphur%20mustard%20degradation%20on%20zirconium%20doped%20Ti%E2%80%93Fe%20oxides&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=%C5%A0tengl,%20V%C3%A1clav&rft.date=2011-09-15&rft.volume=192&rft.issue=3&rft.spage=1491&rft.epage=1504&rft.pages=1491-1504&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2011.06.069&rft_dat=%3Cproquest_cross%3E885910666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671268649&rft_id=info:pmid/21775058&rft_els_id=S0304389411008442&rfr_iscdi=true