Molecular Structures of Crossover and Noncrossover Intermediates during Gap Repair in Yeast: Implications for Recombination

The molecular structures of crossover (CO) and noncrossover (NCO) intermediates were determined by sequencing the products formed when a gapped plasmid was repaired using a diverged chromosomal template. Analyses were done in the absence of mismatch repair (MMR) to allow efficient detection of stran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2010-04, Vol.38 (2), p.211-222
Hauptverfasser: Mitchel, Katrina, Zhang, Hengshan, Welz-Voegele, Caroline, Jinks-Robertson, Sue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 2
container_start_page 211
container_title Molecular cell
container_volume 38
creator Mitchel, Katrina
Zhang, Hengshan
Welz-Voegele, Caroline
Jinks-Robertson, Sue
description The molecular structures of crossover (CO) and noncrossover (NCO) intermediates were determined by sequencing the products formed when a gapped plasmid was repaired using a diverged chromosomal template. Analyses were done in the absence of mismatch repair (MMR) to allow efficient detection of strand-transfer intermediates, and the results reveal striking differences in the extents and locations of heteroduplex DNA (hDNA) in NCO versus CO products. These data indicate that most NCOs are produced by synthesis-dependent strand annealing rather than by a canonical double-strand break repair pathway and that resolution of Holliday junctions formed as part of the latter pathway is highly constrained to generate CO products. We suggest a model in which the length of hDNA formed by the initiating strand invasion event determines susceptibility of the resulting intermediate to antirecombination and ultimately whether a CO- or a NCO-producing pathway is followed. [Display omitted] ► Heteroduplex DNA position in gap-repair products reflects recombination mechanism ► Resolution of Holliday junctions is constrained to produce mostly crossover events ► Most noncrossovers are derived via a synthesis-dependent strand-annealing mechanism ► Mismatch-triggered antirecombination is separable from mismatch correction
doi_str_mv 10.1016/j.molcel.2010.02.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899161362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276510002133</els_id><sourcerecordid>899161362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-4cbfaea0c6287fa22a24d09c7cc0caf85bc800f7be378d728e1aed2db14a46553</originalsourceid><addsrcrecordid>eNqFkdFrFDEQxkNR2tr2PyiSN5_unGSzm6wPghy1HlSFtj74FLLZWcmxm6xJtiD-86a9s48KAzN8_GYGvo-QSwZrBqx5u1tPYbQ4rjkUCXgpdUROGbRyJVgjXhxmLpv6hLxKaQfARK3aY3LCQTDZAJyS35_DiHYZTaR3OS42LxETDQPdxJBSeMBIje_pl-Dts7D1GeOEvTO5sP0Snf9Br81Mb3E2LlLn6Xc0Kb-j22kenTXZBZ_oEGIhbJg655-kc_JyMGPCi0M_I98-Xt1vPq1uvl5vNx9uVraGOq-E7QaDBmzDlRwM54aLHlorrQVrBlV3VgEMssNKql5yhcxgz_uOCSOauq7OyJv93TmGnwumrCeXinOj8RiWpFXbsoZVDf8vKauqZVU5WUixJ59siTjoObrJxF-agX7MR-_0Ph_9mI8GXkqVtdeHB0tXHHxe-htIAd7vASyGPDiMOlmH3ha3I9qs--D-_eEPsuCmDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733913553</pqid></control><display><type>article</type><title>Molecular Structures of Crossover and Noncrossover Intermediates during Gap Repair in Yeast: Implications for Recombination</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Mitchel, Katrina ; Zhang, Hengshan ; Welz-Voegele, Caroline ; Jinks-Robertson, Sue</creator><creatorcontrib>Mitchel, Katrina ; Zhang, Hengshan ; Welz-Voegele, Caroline ; Jinks-Robertson, Sue</creatorcontrib><description>The molecular structures of crossover (CO) and noncrossover (NCO) intermediates were determined by sequencing the products formed when a gapped plasmid was repaired using a diverged chromosomal template. Analyses were done in the absence of mismatch repair (MMR) to allow efficient detection of strand-transfer intermediates, and the results reveal striking differences in the extents and locations of heteroduplex DNA (hDNA) in NCO versus CO products. These data indicate that most NCOs are produced by synthesis-dependent strand annealing rather than by a canonical double-strand break repair pathway and that resolution of Holliday junctions formed as part of the latter pathway is highly constrained to generate CO products. We suggest a model in which the length of hDNA formed by the initiating strand invasion event determines susceptibility of the resulting intermediate to antirecombination and ultimately whether a CO- or a NCO-producing pathway is followed. [Display omitted] ► Heteroduplex DNA position in gap-repair products reflects recombination mechanism ► Resolution of Holliday junctions is constrained to produce mostly crossover events ► Most noncrossovers are derived via a synthesis-dependent strand-annealing mechanism ► Mismatch-triggered antirecombination is separable from mismatch correction</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2010.02.028</identifier><identifier>PMID: 20417600</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chromosomes, Fungal - genetics ; Crossing Over, Genetic ; DNA ; DNA Repair - genetics ; DNA, Fungal - genetics ; Models, Genetic ; Nucleic Acid Heteroduplexes - genetics ; Nucleic Acid Heteroduplexes - metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae - genetics</subject><ispartof>Molecular cell, 2010-04, Vol.38 (2), p.211-222</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-4cbfaea0c6287fa22a24d09c7cc0caf85bc800f7be378d728e1aed2db14a46553</citedby><cites>FETCH-LOGICAL-c505t-4cbfaea0c6287fa22a24d09c7cc0caf85bc800f7be378d728e1aed2db14a46553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2010.02.028$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20417600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitchel, Katrina</creatorcontrib><creatorcontrib>Zhang, Hengshan</creatorcontrib><creatorcontrib>Welz-Voegele, Caroline</creatorcontrib><creatorcontrib>Jinks-Robertson, Sue</creatorcontrib><title>Molecular Structures of Crossover and Noncrossover Intermediates during Gap Repair in Yeast: Implications for Recombination</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The molecular structures of crossover (CO) and noncrossover (NCO) intermediates were determined by sequencing the products formed when a gapped plasmid was repaired using a diverged chromosomal template. Analyses were done in the absence of mismatch repair (MMR) to allow efficient detection of strand-transfer intermediates, and the results reveal striking differences in the extents and locations of heteroduplex DNA (hDNA) in NCO versus CO products. These data indicate that most NCOs are produced by synthesis-dependent strand annealing rather than by a canonical double-strand break repair pathway and that resolution of Holliday junctions formed as part of the latter pathway is highly constrained to generate CO products. We suggest a model in which the length of hDNA formed by the initiating strand invasion event determines susceptibility of the resulting intermediate to antirecombination and ultimately whether a CO- or a NCO-producing pathway is followed. [Display omitted] ► Heteroduplex DNA position in gap-repair products reflects recombination mechanism ► Resolution of Holliday junctions is constrained to produce mostly crossover events ► Most noncrossovers are derived via a synthesis-dependent strand-annealing mechanism ► Mismatch-triggered antirecombination is separable from mismatch correction</description><subject>Chromosomes, Fungal - genetics</subject><subject>Crossing Over, Genetic</subject><subject>DNA</subject><subject>DNA Repair - genetics</subject><subject>DNA, Fungal - genetics</subject><subject>Models, Genetic</subject><subject>Nucleic Acid Heteroduplexes - genetics</subject><subject>Nucleic Acid Heteroduplexes - metabolism</subject><subject>Recombination, Genetic</subject><subject>Saccharomyces cerevisiae - genetics</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkdFrFDEQxkNR2tr2PyiSN5_unGSzm6wPghy1HlSFtj74FLLZWcmxm6xJtiD-86a9s48KAzN8_GYGvo-QSwZrBqx5u1tPYbQ4rjkUCXgpdUROGbRyJVgjXhxmLpv6hLxKaQfARK3aY3LCQTDZAJyS35_DiHYZTaR3OS42LxETDQPdxJBSeMBIje_pl-Dts7D1GeOEvTO5sP0Snf9Br81Mb3E2LlLn6Xc0Kb-j22kenTXZBZ_oEGIhbJg655-kc_JyMGPCi0M_I98-Xt1vPq1uvl5vNx9uVraGOq-E7QaDBmzDlRwM54aLHlorrQVrBlV3VgEMssNKql5yhcxgz_uOCSOauq7OyJv93TmGnwumrCeXinOj8RiWpFXbsoZVDf8vKauqZVU5WUixJ59siTjoObrJxF-agX7MR-_0Ph_9mI8GXkqVtdeHB0tXHHxe-htIAd7vASyGPDiMOlmH3ha3I9qs--D-_eEPsuCmDw</recordid><startdate>20100423</startdate><enddate>20100423</enddate><creator>Mitchel, Katrina</creator><creator>Zhang, Hengshan</creator><creator>Welz-Voegele, Caroline</creator><creator>Jinks-Robertson, Sue</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20100423</creationdate><title>Molecular Structures of Crossover and Noncrossover Intermediates during Gap Repair in Yeast: Implications for Recombination</title><author>Mitchel, Katrina ; Zhang, Hengshan ; Welz-Voegele, Caroline ; Jinks-Robertson, Sue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-4cbfaea0c6287fa22a24d09c7cc0caf85bc800f7be378d728e1aed2db14a46553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chromosomes, Fungal - genetics</topic><topic>Crossing Over, Genetic</topic><topic>DNA</topic><topic>DNA Repair - genetics</topic><topic>DNA, Fungal - genetics</topic><topic>Models, Genetic</topic><topic>Nucleic Acid Heteroduplexes - genetics</topic><topic>Nucleic Acid Heteroduplexes - metabolism</topic><topic>Recombination, Genetic</topic><topic>Saccharomyces cerevisiae - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchel, Katrina</creatorcontrib><creatorcontrib>Zhang, Hengshan</creatorcontrib><creatorcontrib>Welz-Voegele, Caroline</creatorcontrib><creatorcontrib>Jinks-Robertson, Sue</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchel, Katrina</au><au>Zhang, Hengshan</au><au>Welz-Voegele, Caroline</au><au>Jinks-Robertson, Sue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Structures of Crossover and Noncrossover Intermediates during Gap Repair in Yeast: Implications for Recombination</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2010-04-23</date><risdate>2010</risdate><volume>38</volume><issue>2</issue><spage>211</spage><epage>222</epage><pages>211-222</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The molecular structures of crossover (CO) and noncrossover (NCO) intermediates were determined by sequencing the products formed when a gapped plasmid was repaired using a diverged chromosomal template. Analyses were done in the absence of mismatch repair (MMR) to allow efficient detection of strand-transfer intermediates, and the results reveal striking differences in the extents and locations of heteroduplex DNA (hDNA) in NCO versus CO products. These data indicate that most NCOs are produced by synthesis-dependent strand annealing rather than by a canonical double-strand break repair pathway and that resolution of Holliday junctions formed as part of the latter pathway is highly constrained to generate CO products. We suggest a model in which the length of hDNA formed by the initiating strand invasion event determines susceptibility of the resulting intermediate to antirecombination and ultimately whether a CO- or a NCO-producing pathway is followed. [Display omitted] ► Heteroduplex DNA position in gap-repair products reflects recombination mechanism ► Resolution of Holliday junctions is constrained to produce mostly crossover events ► Most noncrossovers are derived via a synthesis-dependent strand-annealing mechanism ► Mismatch-triggered antirecombination is separable from mismatch correction</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20417600</pmid><doi>10.1016/j.molcel.2010.02.028</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2010-04, Vol.38 (2), p.211-222
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_899161362
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Chromosomes, Fungal - genetics
Crossing Over, Genetic
DNA
DNA Repair - genetics
DNA, Fungal - genetics
Models, Genetic
Nucleic Acid Heteroduplexes - genetics
Nucleic Acid Heteroduplexes - metabolism
Recombination, Genetic
Saccharomyces cerevisiae - genetics
title Molecular Structures of Crossover and Noncrossover Intermediates during Gap Repair in Yeast: Implications for Recombination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Structures%20of%20Crossover%20and%20Noncrossover%20Intermediates%20during%20Gap%20Repair%20in%20Yeast:%20Implications%20for%20Recombination&rft.jtitle=Molecular%20cell&rft.au=Mitchel,%20Katrina&rft.date=2010-04-23&rft.volume=38&rft.issue=2&rft.spage=211&rft.epage=222&rft.pages=211-222&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2010.02.028&rft_dat=%3Cproquest_cross%3E899161362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733913553&rft_id=info:pmid/20417600&rft_els_id=S1097276510002133&rfr_iscdi=true