Improved modelling of downburst outflows for wind engineering applications using a cooling source approach

Large eddy simulations (LES), with a range of different practical ground roughness lengths ( z 0=0.001–0.1 m), are used to compare near surface outflow features of a physically realistic cooling source downburst model, previously validated by meteorological observations, with those of the more commo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of wind engineering and industrial aerodynamics 2011-08, Vol.99 (8), p.801-814
Hauptverfasser: Vermeire, Brian C., Orf, Leigh G., Savory, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 814
container_issue 8
container_start_page 801
container_title Journal of wind engineering and industrial aerodynamics
container_volume 99
creator Vermeire, Brian C.
Orf, Leigh G.
Savory, Eric
description Large eddy simulations (LES), with a range of different practical ground roughness lengths ( z 0=0.001–0.1 m), are used to compare near surface outflow features of a physically realistic cooling source downburst model, previously validated by meteorological observations, with those of the more commonly used transient impinging impulsive jet. A scaling procedure is proposed, based on length, velocity, and vorticity scales from within the outflow, allowing for direct comparison between outflows from the two models. Five scaling parameters are presented, capturing the horizontal and vertical position of maximum velocity, the ring vortex aspect ratio, the height of the ring vortex above the surface, and a non-dimensional vorticity term representative of the relative contribution of the ring vortex to the near surface wind field. It is shown that the impinging jet model is not capable of capturing the outflow features predicted by the cooling source model, due to its unrealistic forcing parameters, and is, therefore, unable to capture the physics of an actual downburst event. This difference dominates the non-dimensional vorticity term, showing that impinging jet results deviate by at least 56% from the cooling source results, at times when all other scaling parameter differences are minimized.
doi_str_mv 10.1016/j.jweia.2011.03.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899160548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167610511000481</els_id><sourcerecordid>899160548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-694afd67f0a7b65b5fa80b176a7d1e45303acaadc19869e71246e3257e36bcff3</originalsourceid><addsrcrecordid>eNp9kDFv2zAUhIkiBeq4-QVZuBSZpJKiREpDh8BoEgMGurQz8UQ-uhRk0iWlGP33le0gY6cHPHx3hztC7jkrOePy61AOJ_RQVozzkomSMfGBrHirqqLlnbohq4VSheSs-URucx4YY6pWYkWG7eGY4itaeogWx9GHPY2O2ngK_ZzyROM8uTGeMnUx0ZMPlmLY-4CYzigcj6M3MPkYMp3z5UVNjBefHOdk8MykCOb3Z_LRwZjx7u2uya-n7z83L8Xux_N287grjJDNVMiuBmelcgxUL5u-cdCynisJynKsG8EEGABreNfKDhWvaomiahQK2RvnxJo8XH2X2D8z5kkffDZLNwgY56zbruOSNXW7kOJKmhRzTuj0MfkDpL-aM30eVg_6Mqw-D6uZ0Muwi-rLmz9kA6NLEIzP79KqrnlXVWrhvl05XMq-ekw6G4_BoPUJzaRt9P_N-QcX5ZIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899160548</pqid></control><display><type>article</type><title>Improved modelling of downburst outflows for wind engineering applications using a cooling source approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vermeire, Brian C. ; Orf, Leigh G. ; Savory, Eric</creator><creatorcontrib>Vermeire, Brian C. ; Orf, Leigh G. ; Savory, Eric</creatorcontrib><description>Large eddy simulations (LES), with a range of different practical ground roughness lengths ( z 0=0.001–0.1 m), are used to compare near surface outflow features of a physically realistic cooling source downburst model, previously validated by meteorological observations, with those of the more commonly used transient impinging impulsive jet. A scaling procedure is proposed, based on length, velocity, and vorticity scales from within the outflow, allowing for direct comparison between outflows from the two models. Five scaling parameters are presented, capturing the horizontal and vertical position of maximum velocity, the ring vortex aspect ratio, the height of the ring vortex above the surface, and a non-dimensional vorticity term representative of the relative contribution of the ring vortex to the near surface wind field. It is shown that the impinging jet model is not capable of capturing the outflow features predicted by the cooling source model, due to its unrealistic forcing parameters, and is, therefore, unable to capture the physics of an actual downburst event. This difference dominates the non-dimensional vorticity term, showing that impinging jet results deviate by at least 56% from the cooling source results, at times when all other scaling parameter differences are minimized.</description><identifier>ISSN: 0167-6105</identifier><identifier>EISSN: 1872-8197</identifier><identifier>DOI: 10.1016/j.jweia.2011.03.003</identifier><identifier>CODEN: JWEAD6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Climatology and bioclimatics for buildings ; Computation methods. Tables. Charts ; Cooling ; Downburst ; Exact sciences and technology ; Impinging ; Jet ; Microburst ; Outflow ; Scaling ; Source ; Structural analysis. Stresses ; Thunderstorm</subject><ispartof>Journal of wind engineering and industrial aerodynamics, 2011-08, Vol.99 (8), p.801-814</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-694afd67f0a7b65b5fa80b176a7d1e45303acaadc19869e71246e3257e36bcff3</citedby><cites>FETCH-LOGICAL-c365t-694afd67f0a7b65b5fa80b176a7d1e45303acaadc19869e71246e3257e36bcff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jweia.2011.03.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24419227$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vermeire, Brian C.</creatorcontrib><creatorcontrib>Orf, Leigh G.</creatorcontrib><creatorcontrib>Savory, Eric</creatorcontrib><title>Improved modelling of downburst outflows for wind engineering applications using a cooling source approach</title><title>Journal of wind engineering and industrial aerodynamics</title><description>Large eddy simulations (LES), with a range of different practical ground roughness lengths ( z 0=0.001–0.1 m), are used to compare near surface outflow features of a physically realistic cooling source downburst model, previously validated by meteorological observations, with those of the more commonly used transient impinging impulsive jet. A scaling procedure is proposed, based on length, velocity, and vorticity scales from within the outflow, allowing for direct comparison between outflows from the two models. Five scaling parameters are presented, capturing the horizontal and vertical position of maximum velocity, the ring vortex aspect ratio, the height of the ring vortex above the surface, and a non-dimensional vorticity term representative of the relative contribution of the ring vortex to the near surface wind field. It is shown that the impinging jet model is not capable of capturing the outflow features predicted by the cooling source model, due to its unrealistic forcing parameters, and is, therefore, unable to capture the physics of an actual downburst event. This difference dominates the non-dimensional vorticity term, showing that impinging jet results deviate by at least 56% from the cooling source results, at times when all other scaling parameter differences are minimized.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Climatology and bioclimatics for buildings</subject><subject>Computation methods. Tables. Charts</subject><subject>Cooling</subject><subject>Downburst</subject><subject>Exact sciences and technology</subject><subject>Impinging</subject><subject>Jet</subject><subject>Microburst</subject><subject>Outflow</subject><subject>Scaling</subject><subject>Source</subject><subject>Structural analysis. Stresses</subject><subject>Thunderstorm</subject><issn>0167-6105</issn><issn>1872-8197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv2zAUhIkiBeq4-QVZuBSZpJKiREpDh8BoEgMGurQz8UQ-uhRk0iWlGP33le0gY6cHPHx3hztC7jkrOePy61AOJ_RQVozzkomSMfGBrHirqqLlnbohq4VSheSs-URucx4YY6pWYkWG7eGY4itaeogWx9GHPY2O2ngK_ZzyROM8uTGeMnUx0ZMPlmLY-4CYzigcj6M3MPkYMp3z5UVNjBefHOdk8MykCOb3Z_LRwZjx7u2uya-n7z83L8Xux_N287grjJDNVMiuBmelcgxUL5u-cdCynisJynKsG8EEGABreNfKDhWvaomiahQK2RvnxJo8XH2X2D8z5kkffDZLNwgY56zbruOSNXW7kOJKmhRzTuj0MfkDpL-aM30eVg_6Mqw-D6uZ0Muwi-rLmz9kA6NLEIzP79KqrnlXVWrhvl05XMq-ekw6G4_BoPUJzaRt9P_N-QcX5ZIY</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Vermeire, Brian C.</creator><creator>Orf, Leigh G.</creator><creator>Savory, Eric</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110801</creationdate><title>Improved modelling of downburst outflows for wind engineering applications using a cooling source approach</title><author>Vermeire, Brian C. ; Orf, Leigh G. ; Savory, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-694afd67f0a7b65b5fa80b176a7d1e45303acaadc19869e71246e3257e36bcff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Climatology and bioclimatics for buildings</topic><topic>Computation methods. Tables. Charts</topic><topic>Cooling</topic><topic>Downburst</topic><topic>Exact sciences and technology</topic><topic>Impinging</topic><topic>Jet</topic><topic>Microburst</topic><topic>Outflow</topic><topic>Scaling</topic><topic>Source</topic><topic>Structural analysis. Stresses</topic><topic>Thunderstorm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vermeire, Brian C.</creatorcontrib><creatorcontrib>Orf, Leigh G.</creatorcontrib><creatorcontrib>Savory, Eric</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vermeire, Brian C.</au><au>Orf, Leigh G.</au><au>Savory, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved modelling of downburst outflows for wind engineering applications using a cooling source approach</atitle><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>99</volume><issue>8</issue><spage>801</spage><epage>814</epage><pages>801-814</pages><issn>0167-6105</issn><eissn>1872-8197</eissn><coden>JWEAD6</coden><abstract>Large eddy simulations (LES), with a range of different practical ground roughness lengths ( z 0=0.001–0.1 m), are used to compare near surface outflow features of a physically realistic cooling source downburst model, previously validated by meteorological observations, with those of the more commonly used transient impinging impulsive jet. A scaling procedure is proposed, based on length, velocity, and vorticity scales from within the outflow, allowing for direct comparison between outflows from the two models. Five scaling parameters are presented, capturing the horizontal and vertical position of maximum velocity, the ring vortex aspect ratio, the height of the ring vortex above the surface, and a non-dimensional vorticity term representative of the relative contribution of the ring vortex to the near surface wind field. It is shown that the impinging jet model is not capable of capturing the outflow features predicted by the cooling source model, due to its unrealistic forcing parameters, and is, therefore, unable to capture the physics of an actual downburst event. This difference dominates the non-dimensional vorticity term, showing that impinging jet results deviate by at least 56% from the cooling source results, at times when all other scaling parameter differences are minimized.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jweia.2011.03.003</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6105
ispartof Journal of wind engineering and industrial aerodynamics, 2011-08, Vol.99 (8), p.801-814
issn 0167-6105
1872-8197
language eng
recordid cdi_proquest_miscellaneous_899160548
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Buildings. Public works
Climatology and bioclimatics for buildings
Computation methods. Tables. Charts
Cooling
Downburst
Exact sciences and technology
Impinging
Jet
Microburst
Outflow
Scaling
Source
Structural analysis. Stresses
Thunderstorm
title Improved modelling of downburst outflows for wind engineering applications using a cooling source approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20modelling%20of%20downburst%20outflows%20for%20wind%20engineering%20applications%20using%20a%20cooling%20source%20approach&rft.jtitle=Journal%20of%20wind%20engineering%20and%20industrial%20aerodynamics&rft.au=Vermeire,%20Brian%20C.&rft.date=2011-08-01&rft.volume=99&rft.issue=8&rft.spage=801&rft.epage=814&rft.pages=801-814&rft.issn=0167-6105&rft.eissn=1872-8197&rft.coden=JWEAD6&rft_id=info:doi/10.1016/j.jweia.2011.03.003&rft_dat=%3Cproquest_cross%3E899160548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=899160548&rft_id=info:pmid/&rft_els_id=S0167610511000481&rfr_iscdi=true