The genomes of fermentative Saccharomyces

Many different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes Rendus Biologies 2011, Vol.334 (8), p.687-693
Hauptverfasser: Dequin, Sylvie, Casaregola, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 8
container_start_page 687
container_title Comptes Rendus Biologies
container_volume 334
creator Dequin, Sylvie
Casaregola, Serge
description Many different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of Saccharomyces species and related hybrids involved in major fermentation processes. De nombreuses espèces de levures différentes peuvent participer aux fermentations spontanées, mais les espèces du genre Saccharomyces, incluant Saccharomyces cerevisiae en particulier, jouent un rôle principal dans la production de boissons et d’aliments fermentés. Au cours des récentes années, le développement de techniques d’examen des génomes entiers, telles que les analyses sur puces à ADN et les méthodes de séquençage à haut débit, ont considérablement accru nos connaissances des génomes des Saccharomyces fermentatifs, apportant une lumière nouvelle sur l’histoire évolutive des souches domestiquées et sur les mécanismes moléculaires impliqués dans leur adaptation aux niches fermentaires. L’échange génétique se produit fréquemment entre Saccharomycves fermentatifs et est un mécanisme important de génération de diversité et d’adaptation à des niches écologiques spécifiques. Nous passons en revue et discutons ici les avancées récentes dans la génomique des espèces de Saccharomyces et de leurs hybrides impliqués dans les processus majeurs de fermentation.
doi_str_mv 10.1016/j.crvi.2011.05.019
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_899146735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631069111001521</els_id><sourcerecordid>899146735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-81181904572a7a7859c0467f0997e5aa76a630a56de476d10e71c36e106f05ff3</originalsourceid><addsrcrecordid>eNqNkE9P3DAQxS3UqvxpvwAH2BvikHQmju1Y6gWhFiqt1ANwtlxnzHq1WYOdXYlvj6MAx6onj6zfe_PmMXaKUCOg_L6uXdqHugHEGkQNqA_YESrZVbzh3acyS44VSI2H7DjnNRSRFuILO2ywQ60FHrHL-xUtHmkbB8qL6Bee0kDb0Y5hT4s769zKpji8OMpf2WdvN5m-vb0n7OHXz_vr22r55-b39dWycm0rxqrDyRtaoRqrrOqEdtBK5UFrRcJaJa3kYIXsqVWyRyCFjktCkB6E9_yEXc6-K7sxTykMNr2YaIO5vVqa6Q-wHFI891jYi5l9SvF5R3k0Q8iONhu7pbjLptMay3Iu_oPkjQIuZCGbmXQp5pzIf4RAMFPvZm2m3s3UuwFR8ugiOnuz3_0dqP-QvBddgPMZ8DYa-5hCNg93xUECQIegVCF-zASVcveBksku0NZRHxK50fQx_CvBKwmnmUk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893270356</pqid></control><display><type>article</type><title>The genomes of fermentative Saccharomyces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dequin, Sylvie ; Casaregola, Serge</creator><creatorcontrib>Dequin, Sylvie ; Casaregola, Serge</creatorcontrib><description>Many different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of Saccharomyces species and related hybrids involved in major fermentation processes. De nombreuses espèces de levures différentes peuvent participer aux fermentations spontanées, mais les espèces du genre Saccharomyces, incluant Saccharomyces cerevisiae en particulier, jouent un rôle principal dans la production de boissons et d’aliments fermentés. Au cours des récentes années, le développement de techniques d’examen des génomes entiers, telles que les analyses sur puces à ADN et les méthodes de séquençage à haut débit, ont considérablement accru nos connaissances des génomes des Saccharomyces fermentatifs, apportant une lumière nouvelle sur l’histoire évolutive des souches domestiquées et sur les mécanismes moléculaires impliqués dans leur adaptation aux niches fermentaires. L’échange génétique se produit fréquemment entre Saccharomycves fermentatifs et est un mécanisme important de génération de diversité et d’adaptation à des niches écologiques spécifiques. Nous passons en revue et discutons ici les avancées récentes dans la génomique des espèces de Saccharomyces et de leurs hybrides impliqués dans les processus majeurs de fermentation.</description><identifier>ISSN: 1631-0691</identifier><identifier>ISSN: 1768-3238</identifier><identifier>EISSN: 1768-3238</identifier><identifier>DOI: 10.1016/j.crvi.2011.05.019</identifier><identifier>PMID: 21819951</identifier><language>eng</language><publisher>France: Elsevier SAS</publisher><subject>Adaptations ; beverages ; Biological Evolution ; Chromosomal rearrangements ; Chromosomes, Fungal - genetics ; Comparative genomics ; Copy number variation ; DNA ; Fermentation ; Fermentation - genetics ; Food and Nutrition ; Gene Dosage ; genetic recombination ; genome ; Genome, Fungal ; genomics ; Génomique comparative ; high-throughput nucleotide sequencing ; Hybrides ; Hybrids ; Introgression ; Life Sciences ; niches ; Polymorphism, Genetic - genetics ; Saccharomyces ; Saccharomyces - genetics ; Saccharomyces - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; yeasts</subject><ispartof>Comptes Rendus Biologies, 2011, Vol.334 (8), p.687-693</ispartof><rights>2011</rights><rights>Copyright © 2011. Published by Elsevier SAS.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-81181904572a7a7859c0467f0997e5aa76a630a56de476d10e71c36e106f05ff3</citedby><cites>FETCH-LOGICAL-c445t-81181904572a7a7859c0467f0997e5aa76a630a56de476d10e71c36e106f05ff3</cites><orcidid>0000-0002-9114-2324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1631069111001521$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21819951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01001046$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dequin, Sylvie</creatorcontrib><creatorcontrib>Casaregola, Serge</creatorcontrib><title>The genomes of fermentative Saccharomyces</title><title>Comptes Rendus Biologies</title><addtitle>C R Biol</addtitle><description>Many different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of Saccharomyces species and related hybrids involved in major fermentation processes. De nombreuses espèces de levures différentes peuvent participer aux fermentations spontanées, mais les espèces du genre Saccharomyces, incluant Saccharomyces cerevisiae en particulier, jouent un rôle principal dans la production de boissons et d’aliments fermentés. Au cours des récentes années, le développement de techniques d’examen des génomes entiers, telles que les analyses sur puces à ADN et les méthodes de séquençage à haut débit, ont considérablement accru nos connaissances des génomes des Saccharomyces fermentatifs, apportant une lumière nouvelle sur l’histoire évolutive des souches domestiquées et sur les mécanismes moléculaires impliqués dans leur adaptation aux niches fermentaires. L’échange génétique se produit fréquemment entre Saccharomycves fermentatifs et est un mécanisme important de génération de diversité et d’adaptation à des niches écologiques spécifiques. Nous passons en revue et discutons ici les avancées récentes dans la génomique des espèces de Saccharomyces et de leurs hybrides impliqués dans les processus majeurs de fermentation.</description><subject>Adaptations</subject><subject>beverages</subject><subject>Biological Evolution</subject><subject>Chromosomal rearrangements</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Comparative genomics</subject><subject>Copy number variation</subject><subject>DNA</subject><subject>Fermentation</subject><subject>Fermentation - genetics</subject><subject>Food and Nutrition</subject><subject>Gene Dosage</subject><subject>genetic recombination</subject><subject>genome</subject><subject>Genome, Fungal</subject><subject>genomics</subject><subject>Génomique comparative</subject><subject>high-throughput nucleotide sequencing</subject><subject>Hybrides</subject><subject>Hybrids</subject><subject>Introgression</subject><subject>Life Sciences</subject><subject>niches</subject><subject>Polymorphism, Genetic - genetics</subject><subject>Saccharomyces</subject><subject>Saccharomyces - genetics</subject><subject>Saccharomyces - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>yeasts</subject><issn>1631-0691</issn><issn>1768-3238</issn><issn>1768-3238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE9P3DAQxS3UqvxpvwAH2BvikHQmju1Y6gWhFiqt1ANwtlxnzHq1WYOdXYlvj6MAx6onj6zfe_PmMXaKUCOg_L6uXdqHugHEGkQNqA_YESrZVbzh3acyS44VSI2H7DjnNRSRFuILO2ywQ60FHrHL-xUtHmkbB8qL6Bee0kDb0Y5hT4s769zKpji8OMpf2WdvN5m-vb0n7OHXz_vr22r55-b39dWycm0rxqrDyRtaoRqrrOqEdtBK5UFrRcJaJa3kYIXsqVWyRyCFjktCkB6E9_yEXc6-K7sxTykMNr2YaIO5vVqa6Q-wHFI891jYi5l9SvF5R3k0Q8iONhu7pbjLptMay3Iu_oPkjQIuZCGbmXQp5pzIf4RAMFPvZm2m3s3UuwFR8ugiOnuz3_0dqP-QvBddgPMZ8DYa-5hCNg93xUECQIegVCF-zASVcveBksku0NZRHxK50fQx_CvBKwmnmUk</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Dequin, Sylvie</creator><creator>Casaregola, Serge</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9114-2324</orcidid></search><sort><creationdate>2011</creationdate><title>The genomes of fermentative Saccharomyces</title><author>Dequin, Sylvie ; Casaregola, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-81181904572a7a7859c0467f0997e5aa76a630a56de476d10e71c36e106f05ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptations</topic><topic>beverages</topic><topic>Biological Evolution</topic><topic>Chromosomal rearrangements</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Comparative genomics</topic><topic>Copy number variation</topic><topic>DNA</topic><topic>Fermentation</topic><topic>Fermentation - genetics</topic><topic>Food and Nutrition</topic><topic>Gene Dosage</topic><topic>genetic recombination</topic><topic>genome</topic><topic>Genome, Fungal</topic><topic>genomics</topic><topic>Génomique comparative</topic><topic>high-throughput nucleotide sequencing</topic><topic>Hybrides</topic><topic>Hybrids</topic><topic>Introgression</topic><topic>Life Sciences</topic><topic>niches</topic><topic>Polymorphism, Genetic - genetics</topic><topic>Saccharomyces</topic><topic>Saccharomyces - genetics</topic><topic>Saccharomyces - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dequin, Sylvie</creatorcontrib><creatorcontrib>Casaregola, Serge</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Comptes Rendus Biologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dequin, Sylvie</au><au>Casaregola, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The genomes of fermentative Saccharomyces</atitle><jtitle>Comptes Rendus Biologies</jtitle><addtitle>C R Biol</addtitle><date>2011</date><risdate>2011</risdate><volume>334</volume><issue>8</issue><spage>687</spage><epage>693</epage><pages>687-693</pages><issn>1631-0691</issn><issn>1768-3238</issn><eissn>1768-3238</eissn><abstract>Many different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of Saccharomyces species and related hybrids involved in major fermentation processes. De nombreuses espèces de levures différentes peuvent participer aux fermentations spontanées, mais les espèces du genre Saccharomyces, incluant Saccharomyces cerevisiae en particulier, jouent un rôle principal dans la production de boissons et d’aliments fermentés. Au cours des récentes années, le développement de techniques d’examen des génomes entiers, telles que les analyses sur puces à ADN et les méthodes de séquençage à haut débit, ont considérablement accru nos connaissances des génomes des Saccharomyces fermentatifs, apportant une lumière nouvelle sur l’histoire évolutive des souches domestiquées et sur les mécanismes moléculaires impliqués dans leur adaptation aux niches fermentaires. L’échange génétique se produit fréquemment entre Saccharomycves fermentatifs et est un mécanisme important de génération de diversité et d’adaptation à des niches écologiques spécifiques. Nous passons en revue et discutons ici les avancées récentes dans la génomique des espèces de Saccharomyces et de leurs hybrides impliqués dans les processus majeurs de fermentation.</abstract><cop>France</cop><pub>Elsevier SAS</pub><pmid>21819951</pmid><doi>10.1016/j.crvi.2011.05.019</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9114-2324</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1631-0691
ispartof Comptes Rendus Biologies, 2011, Vol.334 (8), p.687-693
issn 1631-0691
1768-3238
1768-3238
language eng
recordid cdi_proquest_miscellaneous_899146735
source MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptations
beverages
Biological Evolution
Chromosomal rearrangements
Chromosomes, Fungal - genetics
Comparative genomics
Copy number variation
DNA
Fermentation
Fermentation - genetics
Food and Nutrition
Gene Dosage
genetic recombination
genome
Genome, Fungal
genomics
Génomique comparative
high-throughput nucleotide sequencing
Hybrides
Hybrids
Introgression
Life Sciences
niches
Polymorphism, Genetic - genetics
Saccharomyces
Saccharomyces - genetics
Saccharomyces - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
yeasts
title The genomes of fermentative Saccharomyces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20genomes%20of%20fermentative%20Saccharomyces&rft.jtitle=Comptes%20Rendus%20Biologies&rft.au=Dequin,%20Sylvie&rft.date=2011&rft.volume=334&rft.issue=8&rft.spage=687&rft.epage=693&rft.pages=687-693&rft.issn=1631-0691&rft.eissn=1768-3238&rft_id=info:doi/10.1016/j.crvi.2011.05.019&rft_dat=%3Cproquest_hal_p%3E899146735%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893270356&rft_id=info:pmid/21819951&rft_els_id=S1631069111001521&rfr_iscdi=true