The genomes of fermentative Saccharomyces
Many different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning tech...
Gespeichert in:
Veröffentlicht in: | Comptes Rendus Biologies 2011, Vol.334 (8), p.687-693 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 693 |
---|---|
container_issue | 8 |
container_start_page | 687 |
container_title | Comptes Rendus Biologies |
container_volume | 334 |
creator | Dequin, Sylvie Casaregola, Serge |
description | Many different yeast species can take part in spontaneous fermentations, but the species of the genus
Saccharomyces, including
Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative
Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative
Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of
Saccharomyces species and related hybrids involved in major fermentation processes.
De nombreuses espèces de levures différentes peuvent participer aux fermentations spontanées, mais les espèces du genre
Saccharomyces, incluant
Saccharomyces cerevisiae en particulier, jouent un rôle principal dans la production de boissons et d’aliments fermentés. Au cours des récentes années, le développement de techniques d’examen des génomes entiers, telles que les analyses sur puces à ADN et les méthodes de séquençage à haut débit, ont considérablement accru nos connaissances des génomes des
Saccharomyces fermentatifs, apportant une lumière nouvelle sur l’histoire évolutive des souches domestiquées et sur les mécanismes moléculaires impliqués dans leur adaptation aux niches fermentaires. L’échange génétique se produit fréquemment entre
Saccharomycves fermentatifs et est un mécanisme important de génération de diversité et d’adaptation à des niches écologiques spécifiques. Nous passons en revue et discutons ici les avancées récentes dans la génomique des espèces de
Saccharomyces et de leurs hybrides impliqués dans les processus majeurs de fermentation. |
doi_str_mv | 10.1016/j.crvi.2011.05.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_899146735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631069111001521</els_id><sourcerecordid>899146735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-81181904572a7a7859c0467f0997e5aa76a630a56de476d10e71c36e106f05ff3</originalsourceid><addsrcrecordid>eNqNkE9P3DAQxS3UqvxpvwAH2BvikHQmju1Y6gWhFiqt1ANwtlxnzHq1WYOdXYlvj6MAx6onj6zfe_PmMXaKUCOg_L6uXdqHugHEGkQNqA_YESrZVbzh3acyS44VSI2H7DjnNRSRFuILO2ywQ60FHrHL-xUtHmkbB8qL6Bee0kDb0Y5hT4s769zKpji8OMpf2WdvN5m-vb0n7OHXz_vr22r55-b39dWycm0rxqrDyRtaoRqrrOqEdtBK5UFrRcJaJa3kYIXsqVWyRyCFjktCkB6E9_yEXc6-K7sxTykMNr2YaIO5vVqa6Q-wHFI891jYi5l9SvF5R3k0Q8iONhu7pbjLptMay3Iu_oPkjQIuZCGbmXQp5pzIf4RAMFPvZm2m3s3UuwFR8ugiOnuz3_0dqP-QvBddgPMZ8DYa-5hCNg93xUECQIegVCF-zASVcveBksku0NZRHxK50fQx_CvBKwmnmUk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893270356</pqid></control><display><type>article</type><title>The genomes of fermentative Saccharomyces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dequin, Sylvie ; Casaregola, Serge</creator><creatorcontrib>Dequin, Sylvie ; Casaregola, Serge</creatorcontrib><description>Many different yeast species can take part in spontaneous fermentations, but the species of the genus
Saccharomyces, including
Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative
Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative
Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of
Saccharomyces species and related hybrids involved in major fermentation processes.
De nombreuses espèces de levures différentes peuvent participer aux fermentations spontanées, mais les espèces du genre
Saccharomyces, incluant
Saccharomyces cerevisiae en particulier, jouent un rôle principal dans la production de boissons et d’aliments fermentés. Au cours des récentes années, le développement de techniques d’examen des génomes entiers, telles que les analyses sur puces à ADN et les méthodes de séquençage à haut débit, ont considérablement accru nos connaissances des génomes des
Saccharomyces fermentatifs, apportant une lumière nouvelle sur l’histoire évolutive des souches domestiquées et sur les mécanismes moléculaires impliqués dans leur adaptation aux niches fermentaires. L’échange génétique se produit fréquemment entre
Saccharomycves fermentatifs et est un mécanisme important de génération de diversité et d’adaptation à des niches écologiques spécifiques. Nous passons en revue et discutons ici les avancées récentes dans la génomique des espèces de
Saccharomyces et de leurs hybrides impliqués dans les processus majeurs de fermentation.</description><identifier>ISSN: 1631-0691</identifier><identifier>ISSN: 1768-3238</identifier><identifier>EISSN: 1768-3238</identifier><identifier>DOI: 10.1016/j.crvi.2011.05.019</identifier><identifier>PMID: 21819951</identifier><language>eng</language><publisher>France: Elsevier SAS</publisher><subject>Adaptations ; beverages ; Biological Evolution ; Chromosomal rearrangements ; Chromosomes, Fungal - genetics ; Comparative genomics ; Copy number variation ; DNA ; Fermentation ; Fermentation - genetics ; Food and Nutrition ; Gene Dosage ; genetic recombination ; genome ; Genome, Fungal ; genomics ; Génomique comparative ; high-throughput nucleotide sequencing ; Hybrides ; Hybrids ; Introgression ; Life Sciences ; niches ; Polymorphism, Genetic - genetics ; Saccharomyces ; Saccharomyces - genetics ; Saccharomyces - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; yeasts</subject><ispartof>Comptes Rendus Biologies, 2011, Vol.334 (8), p.687-693</ispartof><rights>2011</rights><rights>Copyright © 2011. Published by Elsevier SAS.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-81181904572a7a7859c0467f0997e5aa76a630a56de476d10e71c36e106f05ff3</citedby><cites>FETCH-LOGICAL-c445t-81181904572a7a7859c0467f0997e5aa76a630a56de476d10e71c36e106f05ff3</cites><orcidid>0000-0002-9114-2324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1631069111001521$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21819951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01001046$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dequin, Sylvie</creatorcontrib><creatorcontrib>Casaregola, Serge</creatorcontrib><title>The genomes of fermentative Saccharomyces</title><title>Comptes Rendus Biologies</title><addtitle>C R Biol</addtitle><description>Many different yeast species can take part in spontaneous fermentations, but the species of the genus
Saccharomyces, including
Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative
Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative
Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of
Saccharomyces species and related hybrids involved in major fermentation processes.
De nombreuses espèces de levures différentes peuvent participer aux fermentations spontanées, mais les espèces du genre
Saccharomyces, incluant
Saccharomyces cerevisiae en particulier, jouent un rôle principal dans la production de boissons et d’aliments fermentés. Au cours des récentes années, le développement de techniques d’examen des génomes entiers, telles que les analyses sur puces à ADN et les méthodes de séquençage à haut débit, ont considérablement accru nos connaissances des génomes des
Saccharomyces fermentatifs, apportant une lumière nouvelle sur l’histoire évolutive des souches domestiquées et sur les mécanismes moléculaires impliqués dans leur adaptation aux niches fermentaires. L’échange génétique se produit fréquemment entre
Saccharomycves fermentatifs et est un mécanisme important de génération de diversité et d’adaptation à des niches écologiques spécifiques. Nous passons en revue et discutons ici les avancées récentes dans la génomique des espèces de
Saccharomyces et de leurs hybrides impliqués dans les processus majeurs de fermentation.</description><subject>Adaptations</subject><subject>beverages</subject><subject>Biological Evolution</subject><subject>Chromosomal rearrangements</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Comparative genomics</subject><subject>Copy number variation</subject><subject>DNA</subject><subject>Fermentation</subject><subject>Fermentation - genetics</subject><subject>Food and Nutrition</subject><subject>Gene Dosage</subject><subject>genetic recombination</subject><subject>genome</subject><subject>Genome, Fungal</subject><subject>genomics</subject><subject>Génomique comparative</subject><subject>high-throughput nucleotide sequencing</subject><subject>Hybrides</subject><subject>Hybrids</subject><subject>Introgression</subject><subject>Life Sciences</subject><subject>niches</subject><subject>Polymorphism, Genetic - genetics</subject><subject>Saccharomyces</subject><subject>Saccharomyces - genetics</subject><subject>Saccharomyces - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>yeasts</subject><issn>1631-0691</issn><issn>1768-3238</issn><issn>1768-3238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE9P3DAQxS3UqvxpvwAH2BvikHQmju1Y6gWhFiqt1ANwtlxnzHq1WYOdXYlvj6MAx6onj6zfe_PmMXaKUCOg_L6uXdqHugHEGkQNqA_YESrZVbzh3acyS44VSI2H7DjnNRSRFuILO2ywQ60FHrHL-xUtHmkbB8qL6Bee0kDb0Y5hT4s769zKpji8OMpf2WdvN5m-vb0n7OHXz_vr22r55-b39dWycm0rxqrDyRtaoRqrrOqEdtBK5UFrRcJaJa3kYIXsqVWyRyCFjktCkB6E9_yEXc6-K7sxTykMNr2YaIO5vVqa6Q-wHFI891jYi5l9SvF5R3k0Q8iONhu7pbjLptMay3Iu_oPkjQIuZCGbmXQp5pzIf4RAMFPvZm2m3s3UuwFR8ugiOnuz3_0dqP-QvBddgPMZ8DYa-5hCNg93xUECQIegVCF-zASVcveBksku0NZRHxK50fQx_CvBKwmnmUk</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Dequin, Sylvie</creator><creator>Casaregola, Serge</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9114-2324</orcidid></search><sort><creationdate>2011</creationdate><title>The genomes of fermentative Saccharomyces</title><author>Dequin, Sylvie ; Casaregola, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-81181904572a7a7859c0467f0997e5aa76a630a56de476d10e71c36e106f05ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptations</topic><topic>beverages</topic><topic>Biological Evolution</topic><topic>Chromosomal rearrangements</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Comparative genomics</topic><topic>Copy number variation</topic><topic>DNA</topic><topic>Fermentation</topic><topic>Fermentation - genetics</topic><topic>Food and Nutrition</topic><topic>Gene Dosage</topic><topic>genetic recombination</topic><topic>genome</topic><topic>Genome, Fungal</topic><topic>genomics</topic><topic>Génomique comparative</topic><topic>high-throughput nucleotide sequencing</topic><topic>Hybrides</topic><topic>Hybrids</topic><topic>Introgression</topic><topic>Life Sciences</topic><topic>niches</topic><topic>Polymorphism, Genetic - genetics</topic><topic>Saccharomyces</topic><topic>Saccharomyces - genetics</topic><topic>Saccharomyces - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dequin, Sylvie</creatorcontrib><creatorcontrib>Casaregola, Serge</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Comptes Rendus Biologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dequin, Sylvie</au><au>Casaregola, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The genomes of fermentative Saccharomyces</atitle><jtitle>Comptes Rendus Biologies</jtitle><addtitle>C R Biol</addtitle><date>2011</date><risdate>2011</risdate><volume>334</volume><issue>8</issue><spage>687</spage><epage>693</epage><pages>687-693</pages><issn>1631-0691</issn><issn>1768-3238</issn><eissn>1768-3238</eissn><abstract>Many different yeast species can take part in spontaneous fermentations, but the species of the genus
Saccharomyces, including
Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative
Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative
Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of
Saccharomyces species and related hybrids involved in major fermentation processes.
De nombreuses espèces de levures différentes peuvent participer aux fermentations spontanées, mais les espèces du genre
Saccharomyces, incluant
Saccharomyces cerevisiae en particulier, jouent un rôle principal dans la production de boissons et d’aliments fermentés. Au cours des récentes années, le développement de techniques d’examen des génomes entiers, telles que les analyses sur puces à ADN et les méthodes de séquençage à haut débit, ont considérablement accru nos connaissances des génomes des
Saccharomyces fermentatifs, apportant une lumière nouvelle sur l’histoire évolutive des souches domestiquées et sur les mécanismes moléculaires impliqués dans leur adaptation aux niches fermentaires. L’échange génétique se produit fréquemment entre
Saccharomycves fermentatifs et est un mécanisme important de génération de diversité et d’adaptation à des niches écologiques spécifiques. Nous passons en revue et discutons ici les avancées récentes dans la génomique des espèces de
Saccharomyces et de leurs hybrides impliqués dans les processus majeurs de fermentation.</abstract><cop>France</cop><pub>Elsevier SAS</pub><pmid>21819951</pmid><doi>10.1016/j.crvi.2011.05.019</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9114-2324</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1631-0691 |
ispartof | Comptes Rendus Biologies, 2011, Vol.334 (8), p.687-693 |
issn | 1631-0691 1768-3238 1768-3238 |
language | eng |
recordid | cdi_proquest_miscellaneous_899146735 |
source | MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptations beverages Biological Evolution Chromosomal rearrangements Chromosomes, Fungal - genetics Comparative genomics Copy number variation DNA Fermentation Fermentation - genetics Food and Nutrition Gene Dosage genetic recombination genome Genome, Fungal genomics Génomique comparative high-throughput nucleotide sequencing Hybrides Hybrids Introgression Life Sciences niches Polymorphism, Genetic - genetics Saccharomyces Saccharomyces - genetics Saccharomyces - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism yeasts |
title | The genomes of fermentative Saccharomyces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20genomes%20of%20fermentative%20Saccharomyces&rft.jtitle=Comptes%20Rendus%20Biologies&rft.au=Dequin,%20Sylvie&rft.date=2011&rft.volume=334&rft.issue=8&rft.spage=687&rft.epage=693&rft.pages=687-693&rft.issn=1631-0691&rft.eissn=1768-3238&rft_id=info:doi/10.1016/j.crvi.2011.05.019&rft_dat=%3Cproquest_hal_p%3E899146735%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893270356&rft_id=info:pmid/21819951&rft_els_id=S1631069111001521&rfr_iscdi=true |