AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event
Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP a...
Gespeichert in:
Veröffentlicht in: | Aquaculture international 2005, Vol.13 (1-2), p.137-146 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 1-2 |
container_start_page | 137 |
container_title | Aquaculture international |
container_volume | 13 |
creator | Miggiano, E De Innocentiis, S Ungaro, A Sola, L Crosetti, D |
description | Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP and 4 microsatellite markers were used as genetic tags in gilthead seabream, Sparus auratus. Specimens from two different hatchery broodstocks (one of Atlantic and one of Mediterranean origin) and wild fishes from a natural population were fingerprinted. Putative offspring from these broodstocks were computer-generated, and the confidence in the parentage assignment of their genetic profiles to the hatchery broodstock assessed. The virtual offspring were then mixed with specimens from a natural population to simulate an accidental escape from a floating cage. The risk of false paternity inclusion was evaluated to test the ability to identify either Atlantic or Mediterranean hatchery offspring among wild fish. The method proved to be reliable, and could therefore be used to forecast the impact of fish farm escapees. |
doi_str_mv | 10.1007/s10499-004-9024-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899146655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>899146655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9c24bb88e5729fcb7b3e0de63114a8e2980b89c0ca2fd9db6e1f9338d52e43343</originalsourceid><addsrcrecordid>eNp9kc2KFTEQhYMoeB19AFcGF7pqrfx0d-JuGGZUuKCgA-5CdVLdZuyfa5IW5h18aLu5rly4Kgq-c6hTh7HnAt4IgPZtFqCtrQB0ZUHqSj9gB1G3qhJafXvIDmCbtmqEhMfsSc53AKBaLQ7s9-XN8TPHOfAp-rRkLDSOsVDmmPlAM5XoecEh87LwGGgusb_nfh3LmijwIY7lO2HgmbBLhBOn7PFElN_xgAV5n5aJI89xWsfNO_B-XLDEeeAeB-K75se-0a_N-il71OOY6dnfecFub66_Xn2ojp_ef7y6PFZe1bZU1kvddcZQ3Urb-67tFEGgRgmh0ZC0BjpjPXiUfbCha0j0VikTaklaKa0u2Ouz7yktP1fKxU0x-y04zrSs2RlrhW6aut7IV_8lJVhZC2U28OU_4N2ypnlL4YyBtm3qFjZInKH90zlR704pTpjunQC31-jONbqtRrfX6PZbX5w1PS4OhxSzu_0iQSgQ0BghhPoD1gea1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880776570</pqid></control><display><type>article</type><title>AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event</title><source>Springer Nature - Complete Springer Journals</source><creator>Miggiano, E ; De Innocentiis, S ; Ungaro, A ; Sola, L ; Crosetti, D</creator><creatorcontrib>Miggiano, E ; De Innocentiis, S ; Ungaro, A ; Sola, L ; Crosetti, D</creatorcontrib><description>Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP and 4 microsatellite markers were used as genetic tags in gilthead seabream, Sparus auratus. Specimens from two different hatchery broodstocks (one of Atlantic and one of Mediterranean origin) and wild fishes from a natural population were fingerprinted. Putative offspring from these broodstocks were computer-generated, and the confidence in the parentage assignment of their genetic profiles to the hatchery broodstock assessed. The virtual offspring were then mixed with specimens from a natural population to simulate an accidental escape from a floating cage. The risk of false paternity inclusion was evaluated to test the ability to identify either Atlantic or Mediterranean hatchery offspring among wild fish. The method proved to be reliable, and could therefore be used to forecast the impact of fish farm escapees.</description><identifier>ISSN: 0967-6120</identifier><identifier>EISSN: 1573-143X</identifier><identifier>DOI: 10.1007/s10499-004-9024-4</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>amplified fragment length polymorphism ; animal breeding ; animal identification ; Aquaculture ; bream ; DNA fingerprinting ; fish cages ; fish culture ; Fish farms ; Fish hatcheries ; Fish populations ; Fishery products ; genetic markers ; Genetics ; mariculture ; Marine ; microsatellite repeats ; Offspring ; Sparus aurata</subject><ispartof>Aquaculture international, 2005, Vol.13 (1-2), p.137-146</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-9c24bb88e5729fcb7b3e0de63114a8e2980b89c0ca2fd9db6e1f9338d52e43343</citedby><cites>FETCH-LOGICAL-c359t-9c24bb88e5729fcb7b3e0de63114a8e2980b89c0ca2fd9db6e1f9338d52e43343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Miggiano, E</creatorcontrib><creatorcontrib>De Innocentiis, S</creatorcontrib><creatorcontrib>Ungaro, A</creatorcontrib><creatorcontrib>Sola, L</creatorcontrib><creatorcontrib>Crosetti, D</creatorcontrib><title>AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event</title><title>Aquaculture international</title><description>Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP and 4 microsatellite markers were used as genetic tags in gilthead seabream, Sparus auratus. Specimens from two different hatchery broodstocks (one of Atlantic and one of Mediterranean origin) and wild fishes from a natural population were fingerprinted. Putative offspring from these broodstocks were computer-generated, and the confidence in the parentage assignment of their genetic profiles to the hatchery broodstock assessed. The virtual offspring were then mixed with specimens from a natural population to simulate an accidental escape from a floating cage. The risk of false paternity inclusion was evaluated to test the ability to identify either Atlantic or Mediterranean hatchery offspring among wild fish. The method proved to be reliable, and could therefore be used to forecast the impact of fish farm escapees.</description><subject>amplified fragment length polymorphism</subject><subject>animal breeding</subject><subject>animal identification</subject><subject>Aquaculture</subject><subject>bream</subject><subject>DNA fingerprinting</subject><subject>fish cages</subject><subject>fish culture</subject><subject>Fish farms</subject><subject>Fish hatcheries</subject><subject>Fish populations</subject><subject>Fishery products</subject><subject>genetic markers</subject><subject>Genetics</subject><subject>mariculture</subject><subject>Marine</subject><subject>microsatellite repeats</subject><subject>Offspring</subject><subject>Sparus aurata</subject><issn>0967-6120</issn><issn>1573-143X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc2KFTEQhYMoeB19AFcGF7pqrfx0d-JuGGZUuKCgA-5CdVLdZuyfa5IW5h18aLu5rly4Kgq-c6hTh7HnAt4IgPZtFqCtrQB0ZUHqSj9gB1G3qhJafXvIDmCbtmqEhMfsSc53AKBaLQ7s9-XN8TPHOfAp-rRkLDSOsVDmmPlAM5XoecEh87LwGGgusb_nfh3LmijwIY7lO2HgmbBLhBOn7PFElN_xgAV5n5aJI89xWsfNO_B-XLDEeeAeB-K75se-0a_N-il71OOY6dnfecFub66_Xn2ojp_ef7y6PFZe1bZU1kvddcZQ3Urb-67tFEGgRgmh0ZC0BjpjPXiUfbCha0j0VikTaklaKa0u2Ouz7yktP1fKxU0x-y04zrSs2RlrhW6aut7IV_8lJVhZC2U28OU_4N2ypnlL4YyBtm3qFjZInKH90zlR704pTpjunQC31-jONbqtRrfX6PZbX5w1PS4OhxSzu_0iQSgQ0BghhPoD1gea1g</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Miggiano, E</creator><creator>De Innocentiis, S</creator><creator>Ungaro, A</creator><creator>Sola, L</creator><creator>Crosetti, D</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>8FD</scope><scope>FR3</scope><scope>H99</scope><scope>L.F</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>2005</creationdate><title>AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event</title><author>Miggiano, E ; De Innocentiis, S ; Ungaro, A ; Sola, L ; Crosetti, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9c24bb88e5729fcb7b3e0de63114a8e2980b89c0ca2fd9db6e1f9338d52e43343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>amplified fragment length polymorphism</topic><topic>animal breeding</topic><topic>animal identification</topic><topic>Aquaculture</topic><topic>bream</topic><topic>DNA fingerprinting</topic><topic>fish cages</topic><topic>fish culture</topic><topic>Fish farms</topic><topic>Fish hatcheries</topic><topic>Fish populations</topic><topic>Fishery products</topic><topic>genetic markers</topic><topic>Genetics</topic><topic>mariculture</topic><topic>Marine</topic><topic>microsatellite repeats</topic><topic>Offspring</topic><topic>Sparus aurata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miggiano, E</creatorcontrib><creatorcontrib>De Innocentiis, S</creatorcontrib><creatorcontrib>Ungaro, A</creatorcontrib><creatorcontrib>Sola, L</creatorcontrib><creatorcontrib>Crosetti, D</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miggiano, E</au><au>De Innocentiis, S</au><au>Ungaro, A</au><au>Sola, L</au><au>Crosetti, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event</atitle><jtitle>Aquaculture international</jtitle><date>2005</date><risdate>2005</risdate><volume>13</volume><issue>1-2</issue><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>0967-6120</issn><eissn>1573-143X</eissn><abstract>Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP and 4 microsatellite markers were used as genetic tags in gilthead seabream, Sparus auratus. Specimens from two different hatchery broodstocks (one of Atlantic and one of Mediterranean origin) and wild fishes from a natural population were fingerprinted. Putative offspring from these broodstocks were computer-generated, and the confidence in the parentage assignment of their genetic profiles to the hatchery broodstock assessed. The virtual offspring were then mixed with specimens from a natural population to simulate an accidental escape from a floating cage. The risk of false paternity inclusion was evaluated to test the ability to identify either Atlantic or Mediterranean hatchery offspring among wild fish. The method proved to be reliable, and could therefore be used to forecast the impact of fish farm escapees.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10499-004-9024-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-6120 |
ispartof | Aquaculture international, 2005, Vol.13 (1-2), p.137-146 |
issn | 0967-6120 1573-143X |
language | eng |
recordid | cdi_proquest_miscellaneous_899146655 |
source | Springer Nature - Complete Springer Journals |
subjects | amplified fragment length polymorphism animal breeding animal identification Aquaculture bream DNA fingerprinting fish cages fish culture Fish farms Fish hatcheries Fish populations Fishery products genetic markers Genetics mariculture Marine microsatellite repeats Offspring Sparus aurata |
title | AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFLP%20and%20microsatellites%20as%20genetic%20tags%20to%20identify%20cultured%20gilthead%20seabream%20escapees:%20data%20from%20a%20simulated%20floating%20cage%20breaking%20event&rft.jtitle=Aquaculture%20international&rft.au=Miggiano,%20E&rft.date=2005&rft.volume=13&rft.issue=1-2&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=0967-6120&rft.eissn=1573-143X&rft_id=info:doi/10.1007/s10499-004-9024-4&rft_dat=%3Cproquest_cross%3E899146655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880776570&rft_id=info:pmid/&rfr_iscdi=true |