AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event

Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture international 2005, Vol.13 (1-2), p.137-146
Hauptverfasser: Miggiano, E, De Innocentiis, S, Ungaro, A, Sola, L, Crosetti, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1-2
container_start_page 137
container_title Aquaculture international
container_volume 13
creator Miggiano, E
De Innocentiis, S
Ungaro, A
Sola, L
Crosetti, D
description Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP and 4 microsatellite markers were used as genetic tags in gilthead seabream, Sparus auratus. Specimens from two different hatchery broodstocks (one of Atlantic and one of Mediterranean origin) and wild fishes from a natural population were fingerprinted. Putative offspring from these broodstocks were computer-generated, and the confidence in the parentage assignment of their genetic profiles to the hatchery broodstock assessed. The virtual offspring were then mixed with specimens from a natural population to simulate an accidental escape from a floating cage. The risk of false paternity inclusion was evaluated to test the ability to identify either Atlantic or Mediterranean hatchery offspring among wild fish. The method proved to be reliable, and could therefore be used to forecast the impact of fish farm escapees.
doi_str_mv 10.1007/s10499-004-9024-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899146655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>899146655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9c24bb88e5729fcb7b3e0de63114a8e2980b89c0ca2fd9db6e1f9338d52e43343</originalsourceid><addsrcrecordid>eNp9kc2KFTEQhYMoeB19AFcGF7pqrfx0d-JuGGZUuKCgA-5CdVLdZuyfa5IW5h18aLu5rly4Kgq-c6hTh7HnAt4IgPZtFqCtrQB0ZUHqSj9gB1G3qhJafXvIDmCbtmqEhMfsSc53AKBaLQ7s9-XN8TPHOfAp-rRkLDSOsVDmmPlAM5XoecEh87LwGGgusb_nfh3LmijwIY7lO2HgmbBLhBOn7PFElN_xgAV5n5aJI89xWsfNO_B-XLDEeeAeB-K75se-0a_N-il71OOY6dnfecFub66_Xn2ojp_ef7y6PFZe1bZU1kvddcZQ3Urb-67tFEGgRgmh0ZC0BjpjPXiUfbCha0j0VikTaklaKa0u2Ouz7yktP1fKxU0x-y04zrSs2RlrhW6aut7IV_8lJVhZC2U28OU_4N2ypnlL4YyBtm3qFjZInKH90zlR704pTpjunQC31-jONbqtRrfX6PZbX5w1PS4OhxSzu_0iQSgQ0BghhPoD1gea1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880776570</pqid></control><display><type>article</type><title>AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event</title><source>Springer Nature - Complete Springer Journals</source><creator>Miggiano, E ; De Innocentiis, S ; Ungaro, A ; Sola, L ; Crosetti, D</creator><creatorcontrib>Miggiano, E ; De Innocentiis, S ; Ungaro, A ; Sola, L ; Crosetti, D</creatorcontrib><description>Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP and 4 microsatellite markers were used as genetic tags in gilthead seabream, Sparus auratus. Specimens from two different hatchery broodstocks (one of Atlantic and one of Mediterranean origin) and wild fishes from a natural population were fingerprinted. Putative offspring from these broodstocks were computer-generated, and the confidence in the parentage assignment of their genetic profiles to the hatchery broodstock assessed. The virtual offspring were then mixed with specimens from a natural population to simulate an accidental escape from a floating cage. The risk of false paternity inclusion was evaluated to test the ability to identify either Atlantic or Mediterranean hatchery offspring among wild fish. The method proved to be reliable, and could therefore be used to forecast the impact of fish farm escapees.</description><identifier>ISSN: 0967-6120</identifier><identifier>EISSN: 1573-143X</identifier><identifier>DOI: 10.1007/s10499-004-9024-4</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>amplified fragment length polymorphism ; animal breeding ; animal identification ; Aquaculture ; bream ; DNA fingerprinting ; fish cages ; fish culture ; Fish farms ; Fish hatcheries ; Fish populations ; Fishery products ; genetic markers ; Genetics ; mariculture ; Marine ; microsatellite repeats ; Offspring ; Sparus aurata</subject><ispartof>Aquaculture international, 2005, Vol.13 (1-2), p.137-146</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-9c24bb88e5729fcb7b3e0de63114a8e2980b89c0ca2fd9db6e1f9338d52e43343</citedby><cites>FETCH-LOGICAL-c359t-9c24bb88e5729fcb7b3e0de63114a8e2980b89c0ca2fd9db6e1f9338d52e43343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Miggiano, E</creatorcontrib><creatorcontrib>De Innocentiis, S</creatorcontrib><creatorcontrib>Ungaro, A</creatorcontrib><creatorcontrib>Sola, L</creatorcontrib><creatorcontrib>Crosetti, D</creatorcontrib><title>AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event</title><title>Aquaculture international</title><description>Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP and 4 microsatellite markers were used as genetic tags in gilthead seabream, Sparus auratus. Specimens from two different hatchery broodstocks (one of Atlantic and one of Mediterranean origin) and wild fishes from a natural population were fingerprinted. Putative offspring from these broodstocks were computer-generated, and the confidence in the parentage assignment of their genetic profiles to the hatchery broodstock assessed. The virtual offspring were then mixed with specimens from a natural population to simulate an accidental escape from a floating cage. The risk of false paternity inclusion was evaluated to test the ability to identify either Atlantic or Mediterranean hatchery offspring among wild fish. The method proved to be reliable, and could therefore be used to forecast the impact of fish farm escapees.</description><subject>amplified fragment length polymorphism</subject><subject>animal breeding</subject><subject>animal identification</subject><subject>Aquaculture</subject><subject>bream</subject><subject>DNA fingerprinting</subject><subject>fish cages</subject><subject>fish culture</subject><subject>Fish farms</subject><subject>Fish hatcheries</subject><subject>Fish populations</subject><subject>Fishery products</subject><subject>genetic markers</subject><subject>Genetics</subject><subject>mariculture</subject><subject>Marine</subject><subject>microsatellite repeats</subject><subject>Offspring</subject><subject>Sparus aurata</subject><issn>0967-6120</issn><issn>1573-143X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc2KFTEQhYMoeB19AFcGF7pqrfx0d-JuGGZUuKCgA-5CdVLdZuyfa5IW5h18aLu5rly4Kgq-c6hTh7HnAt4IgPZtFqCtrQB0ZUHqSj9gB1G3qhJafXvIDmCbtmqEhMfsSc53AKBaLQ7s9-XN8TPHOfAp-rRkLDSOsVDmmPlAM5XoecEh87LwGGgusb_nfh3LmijwIY7lO2HgmbBLhBOn7PFElN_xgAV5n5aJI89xWsfNO_B-XLDEeeAeB-K75se-0a_N-il71OOY6dnfecFub66_Xn2ojp_ef7y6PFZe1bZU1kvddcZQ3Urb-67tFEGgRgmh0ZC0BjpjPXiUfbCha0j0VikTaklaKa0u2Ouz7yktP1fKxU0x-y04zrSs2RlrhW6aut7IV_8lJVhZC2U28OU_4N2ypnlL4YyBtm3qFjZInKH90zlR704pTpjunQC31-jONbqtRrfX6PZbX5w1PS4OhxSzu_0iQSgQ0BghhPoD1gea1g</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Miggiano, E</creator><creator>De Innocentiis, S</creator><creator>Ungaro, A</creator><creator>Sola, L</creator><creator>Crosetti, D</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>8FD</scope><scope>FR3</scope><scope>H99</scope><scope>L.F</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>2005</creationdate><title>AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event</title><author>Miggiano, E ; De Innocentiis, S ; Ungaro, A ; Sola, L ; Crosetti, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9c24bb88e5729fcb7b3e0de63114a8e2980b89c0ca2fd9db6e1f9338d52e43343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>amplified fragment length polymorphism</topic><topic>animal breeding</topic><topic>animal identification</topic><topic>Aquaculture</topic><topic>bream</topic><topic>DNA fingerprinting</topic><topic>fish cages</topic><topic>fish culture</topic><topic>Fish farms</topic><topic>Fish hatcheries</topic><topic>Fish populations</topic><topic>Fishery products</topic><topic>genetic markers</topic><topic>Genetics</topic><topic>mariculture</topic><topic>Marine</topic><topic>microsatellite repeats</topic><topic>Offspring</topic><topic>Sparus aurata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miggiano, E</creatorcontrib><creatorcontrib>De Innocentiis, S</creatorcontrib><creatorcontrib>Ungaro, A</creatorcontrib><creatorcontrib>Sola, L</creatorcontrib><creatorcontrib>Crosetti, D</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miggiano, E</au><au>De Innocentiis, S</au><au>Ungaro, A</au><au>Sola, L</au><au>Crosetti, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event</atitle><jtitle>Aquaculture international</jtitle><date>2005</date><risdate>2005</risdate><volume>13</volume><issue>1-2</issue><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>0967-6120</issn><eissn>1573-143X</eissn><abstract>Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP and 4 microsatellite markers were used as genetic tags in gilthead seabream, Sparus auratus. Specimens from two different hatchery broodstocks (one of Atlantic and one of Mediterranean origin) and wild fishes from a natural population were fingerprinted. Putative offspring from these broodstocks were computer-generated, and the confidence in the parentage assignment of their genetic profiles to the hatchery broodstock assessed. The virtual offspring were then mixed with specimens from a natural population to simulate an accidental escape from a floating cage. The risk of false paternity inclusion was evaluated to test the ability to identify either Atlantic or Mediterranean hatchery offspring among wild fish. The method proved to be reliable, and could therefore be used to forecast the impact of fish farm escapees.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10499-004-9024-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-6120
ispartof Aquaculture international, 2005, Vol.13 (1-2), p.137-146
issn 0967-6120
1573-143X
language eng
recordid cdi_proquest_miscellaneous_899146655
source Springer Nature - Complete Springer Journals
subjects amplified fragment length polymorphism
animal breeding
animal identification
Aquaculture
bream
DNA fingerprinting
fish cages
fish culture
Fish farms
Fish hatcheries
Fish populations
Fishery products
genetic markers
Genetics
mariculture
Marine
microsatellite repeats
Offspring
Sparus aurata
title AFLP and microsatellites as genetic tags to identify cultured gilthead seabream escapees: data from a simulated floating cage breaking event
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFLP%20and%20microsatellites%20as%20genetic%20tags%20to%20identify%20cultured%20gilthead%20seabream%20escapees:%20data%20from%20a%20simulated%20floating%20cage%20breaking%20event&rft.jtitle=Aquaculture%20international&rft.au=Miggiano,%20E&rft.date=2005&rft.volume=13&rft.issue=1-2&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=0967-6120&rft.eissn=1573-143X&rft_id=info:doi/10.1007/s10499-004-9024-4&rft_dat=%3Cproquest_cross%3E899146655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880776570&rft_id=info:pmid/&rfr_iscdi=true