On the instability of weakly radially anisotropic star clusters

We discuss contradictions existing in the literature in the problem on the stability of collisionless spherical stellar systems, which are the simplest anisotropic generalization of the well-known polytropic models. On the one hand, calculations of the growth rates within the framework of a linear s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy letters 2011-08, Vol.37 (8), p.536-549
Hauptverfasser: Polyachenko, V. L., Polyachenko, E. V., Shukhman, I. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue 8
container_start_page 536
container_title Astronomy letters
container_volume 37
creator Polyachenko, V. L.
Polyachenko, E. V.
Shukhman, I. G.
description We discuss contradictions existing in the literature in the problem on the stability of collisionless spherical stellar systems, which are the simplest anisotropic generalization of the well-known polytropic models. On the one hand, calculations of the growth rates within the framework of a linear stability theory and N -body simulations suggest that these systems should become stable when the parameter s characterizing the degree of anisotropy of the stellar velocity distribution becomes lower than some critical value s crit > 0. On the other hand, according to Palmer and Papaloizou, the growth rate should be nonzero up to the isotropic limit s = 0. Using our method of determining the eigenmodes of stellar systems, we show that even though the mode growth rates in weakly radially anisotropic systems of this type are nonzero, they are exponentially small, i.e., decrease as γ ∝ exp(− a/s ) when s → 0. For slightly radially anisotropic systems with a finite lifetime, this actually implies stability.
doi_str_mv 10.1134/S0320010811070047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899145915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>899145915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-23fd5e9ccd6042ea5036ada01c729ccfa5825795f77629e9769089b66dac90b33</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN3gxtXoTTJ5rUSKLyh0oa5DmsloajqpyQzSf2-kgqC4uofLdw6Hg9AphguMaXP5CJQAYJAYgwBoxB6aYMZJzaWg-0UDp7UQVByio5xXAKAohQm6WvTV8Ooq3-fBLH3ww7aKXfXhzFvYVsm03oQiTO9zHFLceFsVMFU2jHlwKR-jg86E7E6-7xQ93948ze7r-eLuYXY9ry1txFAT2rXMKWtbDg1xhgHlpjWArSDl2xkmCROKdUJwopwSXIFUS85bYxUsKZ2i813uJsX30eVBr322LgTTuzhmLZXCDVOYFfLsF7mKY-pLOS0lKMUFfMXhHWRTzDm5Tm-SX5u01Rj016D6z6DFQ3aeXNj-xaWf4P9NnxIbdkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880996703</pqid></control><display><type>article</type><title>On the instability of weakly radially anisotropic star clusters</title><source>SpringerLink Journals - AutoHoldings</source><creator>Polyachenko, V. L. ; Polyachenko, E. V. ; Shukhman, I. G.</creator><creatorcontrib>Polyachenko, V. L. ; Polyachenko, E. V. ; Shukhman, I. G.</creatorcontrib><description>We discuss contradictions existing in the literature in the problem on the stability of collisionless spherical stellar systems, which are the simplest anisotropic generalization of the well-known polytropic models. On the one hand, calculations of the growth rates within the framework of a linear stability theory and N -body simulations suggest that these systems should become stable when the parameter s characterizing the degree of anisotropy of the stellar velocity distribution becomes lower than some critical value s crit &gt; 0. On the other hand, according to Palmer and Papaloizou, the growth rate should be nonzero up to the isotropic limit s = 0. Using our method of determining the eigenmodes of stellar systems, we show that even though the mode growth rates in weakly radially anisotropic systems of this type are nonzero, they are exponentially small, i.e., decrease as γ ∝ exp(− a/s ) when s → 0. For slightly radially anisotropic systems with a finite lifetime, this actually implies stability.</description><identifier>ISSN: 1063-7737</identifier><identifier>EISSN: 1562-6873</identifier><identifier>DOI: 10.1134/S0320010811070047</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Anisotropy ; Astronomy ; Astrophysics and Astroparticles ; Eigenvalues ; Observations and Techniques ; Physics ; Physics and Astronomy ; Stars &amp; galaxies ; Velocity distribution</subject><ispartof>Astronomy letters, 2011-08, Vol.37 (8), p.536-549</ispartof><rights>Pleiades Publishing, Ltd. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-23fd5e9ccd6042ea5036ada01c729ccfa5825795f77629e9769089b66dac90b33</citedby><cites>FETCH-LOGICAL-c347t-23fd5e9ccd6042ea5036ada01c729ccfa5825795f77629e9769089b66dac90b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0320010811070047$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0320010811070047$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Polyachenko, V. L.</creatorcontrib><creatorcontrib>Polyachenko, E. V.</creatorcontrib><creatorcontrib>Shukhman, I. G.</creatorcontrib><title>On the instability of weakly radially anisotropic star clusters</title><title>Astronomy letters</title><addtitle>Astron. Lett</addtitle><description>We discuss contradictions existing in the literature in the problem on the stability of collisionless spherical stellar systems, which are the simplest anisotropic generalization of the well-known polytropic models. On the one hand, calculations of the growth rates within the framework of a linear stability theory and N -body simulations suggest that these systems should become stable when the parameter s characterizing the degree of anisotropy of the stellar velocity distribution becomes lower than some critical value s crit &gt; 0. On the other hand, according to Palmer and Papaloizou, the growth rate should be nonzero up to the isotropic limit s = 0. Using our method of determining the eigenmodes of stellar systems, we show that even though the mode growth rates in weakly radially anisotropic systems of this type are nonzero, they are exponentially small, i.e., decrease as γ ∝ exp(− a/s ) when s → 0. For slightly radially anisotropic systems with a finite lifetime, this actually implies stability.</description><subject>Anisotropy</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Eigenvalues</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stars &amp; galaxies</subject><subject>Velocity distribution</subject><issn>1063-7737</issn><issn>1562-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN3gxtXoTTJ5rUSKLyh0oa5DmsloajqpyQzSf2-kgqC4uofLdw6Hg9AphguMaXP5CJQAYJAYgwBoxB6aYMZJzaWg-0UDp7UQVByio5xXAKAohQm6WvTV8Ooq3-fBLH3ww7aKXfXhzFvYVsm03oQiTO9zHFLceFsVMFU2jHlwKR-jg86E7E6-7xQ93948ze7r-eLuYXY9ry1txFAT2rXMKWtbDg1xhgHlpjWArSDl2xkmCROKdUJwopwSXIFUS85bYxUsKZ2i813uJsX30eVBr322LgTTuzhmLZXCDVOYFfLsF7mKY-pLOS0lKMUFfMXhHWRTzDm5Tm-SX5u01Rj016D6z6DFQ3aeXNj-xaWf4P9NnxIbdkw</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Polyachenko, V. L.</creator><creator>Polyachenko, E. V.</creator><creator>Shukhman, I. G.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20110801</creationdate><title>On the instability of weakly radially anisotropic star clusters</title><author>Polyachenko, V. L. ; Polyachenko, E. V. ; Shukhman, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-23fd5e9ccd6042ea5036ada01c729ccfa5825795f77629e9769089b66dac90b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Eigenvalues</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stars &amp; galaxies</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyachenko, V. L.</creatorcontrib><creatorcontrib>Polyachenko, E. V.</creatorcontrib><creatorcontrib>Shukhman, I. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astronomy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyachenko, V. L.</au><au>Polyachenko, E. V.</au><au>Shukhman, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the instability of weakly radially anisotropic star clusters</atitle><jtitle>Astronomy letters</jtitle><stitle>Astron. Lett</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>37</volume><issue>8</issue><spage>536</spage><epage>549</epage><pages>536-549</pages><issn>1063-7737</issn><eissn>1562-6873</eissn><abstract>We discuss contradictions existing in the literature in the problem on the stability of collisionless spherical stellar systems, which are the simplest anisotropic generalization of the well-known polytropic models. On the one hand, calculations of the growth rates within the framework of a linear stability theory and N -body simulations suggest that these systems should become stable when the parameter s characterizing the degree of anisotropy of the stellar velocity distribution becomes lower than some critical value s crit &gt; 0. On the other hand, according to Palmer and Papaloizou, the growth rate should be nonzero up to the isotropic limit s = 0. Using our method of determining the eigenmodes of stellar systems, we show that even though the mode growth rates in weakly radially anisotropic systems of this type are nonzero, they are exponentially small, i.e., decrease as γ ∝ exp(− a/s ) when s → 0. For slightly radially anisotropic systems with a finite lifetime, this actually implies stability.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0320010811070047</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7737
ispartof Astronomy letters, 2011-08, Vol.37 (8), p.536-549
issn 1063-7737
1562-6873
language eng
recordid cdi_proquest_miscellaneous_899145915
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Astronomy
Astrophysics and Astroparticles
Eigenvalues
Observations and Techniques
Physics
Physics and Astronomy
Stars & galaxies
Velocity distribution
title On the instability of weakly radially anisotropic star clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20instability%20of%20weakly%20radially%20anisotropic%20star%20clusters&rft.jtitle=Astronomy%20letters&rft.au=Polyachenko,%20V.%20L.&rft.date=2011-08-01&rft.volume=37&rft.issue=8&rft.spage=536&rft.epage=549&rft.pages=536-549&rft.issn=1063-7737&rft.eissn=1562-6873&rft_id=info:doi/10.1134/S0320010811070047&rft_dat=%3Cproquest_cross%3E899145915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880996703&rft_id=info:pmid/&rfr_iscdi=true