Climate Trends and Global Crop Production Since 1980
Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2011-07, Vol.333 (6042), p.616-620 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 620 |
---|---|
container_issue | 6042 |
container_start_page | 616 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 333 |
creator | Lobell, David B. Schlenker, Wolfram Costa-Roberts, Justin |
description | Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors. |
doi_str_mv | 10.1126/science.1204531 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_899143965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27978350</jstor_id><sourcerecordid>27978350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-4df85a817651990b763a4c907421ac54c53341b2a397e6fbc51ec3980833ca8a3</originalsourceid><addsrcrecordid>eNpd0M1LwzAYBvAgipvTsyelCOKp25vPJkcZfsFAwXkOaZpCR9fMpD343xtZdeAph_eXJ28ehC4xzDEmYhFt4zrr5pgA4xQfoSkGxXNFgB6jKQAVuYSCT9BZjBuANFP0FE0I5hwDhSliy7bZmt5l6-C6Kmamq7Kn1pemzZbB77K34KvB9o3vsvcmvZRhJeEcndSmje5iPGfo4_FhvXzOV69PL8v7VW65gD5nVS25kbgQHCsFZSGoYVZBwQg2ljPLKWW4JIaqwom6tBw7S1O-pNQaaegM3e1zd8F_Di72ettE69rWdM4PUUulMKNK8CRv_smNH0KXltOyUAUIrkhCiz2ywccYXK13IX0-fGkM-qdOPdapxzrTjesxdii3rvrzv_0lcDsCE61p62A628SDS9sREDK5q73bxN6HwzztJikH-g3XvoQ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879706592</pqid></control><display><type>article</type><title>Climate Trends and Global Crop Production Since 1980</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Lobell, David B. ; Schlenker, Wolfram ; Costa-Roberts, Justin</creator><creatorcontrib>Lobell, David B. ; Schlenker, Wolfram ; Costa-Roberts, Justin</creatorcontrib><description>Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1204531</identifier><identifier>PMID: 21551030</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Agricultural production ; Climate ; Climate Change ; Climate change adaptation ; Climate models ; Climate science ; Corn ; Crop production ; Crops ; Crops, Agricultural - growth & development ; Economic sociology ; Global climate models ; Glycine max - growth & development ; Nonlinear Dynamics ; Oryza - growth & development ; Oryza sativa ; Production. Distribution. Advertising ; Regression Analysis ; Rice ; Rural and urban sociology ; Rural sociology ; Seasons ; Sociology ; Sociology of economy and development ; Soybeans ; Temperature ; Triticum - growth & development ; Triticum aestivum ; Weather ; Wheat ; Zea mays ; Zea mays - growth & development</subject><ispartof>Science (American Association for the Advancement of Science), 2011-07, Vol.333 (6042), p.616-620</ispartof><rights>Copyright © 2011 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-4df85a817651990b763a4c907421ac54c53341b2a397e6fbc51ec3980833ca8a3</citedby><cites>FETCH-LOGICAL-c560t-4df85a817651990b763a4c907421ac54c53341b2a397e6fbc51ec3980833ca8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27978350$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27978350$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24392068$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21551030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lobell, David B.</creatorcontrib><creatorcontrib>Schlenker, Wolfram</creatorcontrib><creatorcontrib>Costa-Roberts, Justin</creatorcontrib><title>Climate Trends and Global Crop Production Since 1980</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.</description><subject>Agricultural production</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate change adaptation</subject><subject>Climate models</subject><subject>Climate science</subject><subject>Corn</subject><subject>Crop production</subject><subject>Crops</subject><subject>Crops, Agricultural - growth & development</subject><subject>Economic sociology</subject><subject>Global climate models</subject><subject>Glycine max - growth & development</subject><subject>Nonlinear Dynamics</subject><subject>Oryza - growth & development</subject><subject>Oryza sativa</subject><subject>Production. Distribution. Advertising</subject><subject>Regression Analysis</subject><subject>Rice</subject><subject>Rural and urban sociology</subject><subject>Rural sociology</subject><subject>Seasons</subject><subject>Sociology</subject><subject>Sociology of economy and development</subject><subject>Soybeans</subject><subject>Temperature</subject><subject>Triticum - growth & development</subject><subject>Triticum aestivum</subject><subject>Weather</subject><subject>Wheat</subject><subject>Zea mays</subject><subject>Zea mays - growth & development</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0M1LwzAYBvAgipvTsyelCOKp25vPJkcZfsFAwXkOaZpCR9fMpD343xtZdeAph_eXJ28ehC4xzDEmYhFt4zrr5pgA4xQfoSkGxXNFgB6jKQAVuYSCT9BZjBuANFP0FE0I5hwDhSliy7bZmt5l6-C6Kmamq7Kn1pemzZbB77K34KvB9o3vsvcmvZRhJeEcndSmje5iPGfo4_FhvXzOV69PL8v7VW65gD5nVS25kbgQHCsFZSGoYVZBwQg2ljPLKWW4JIaqwom6tBw7S1O-pNQaaegM3e1zd8F_Di72ettE69rWdM4PUUulMKNK8CRv_smNH0KXltOyUAUIrkhCiz2ywccYXK13IX0-fGkM-qdOPdapxzrTjesxdii3rvrzv_0lcDsCE61p62A628SDS9sREDK5q73bxN6HwzztJikH-g3XvoQ6</recordid><startdate>20110729</startdate><enddate>20110729</enddate><creator>Lobell, David B.</creator><creator>Schlenker, Wolfram</creator><creator>Costa-Roberts, Justin</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope></search><sort><creationdate>20110729</creationdate><title>Climate Trends and Global Crop Production Since 1980</title><author>Lobell, David B. ; Schlenker, Wolfram ; Costa-Roberts, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-4df85a817651990b763a4c907421ac54c53341b2a397e6fbc51ec3980833ca8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural production</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate change adaptation</topic><topic>Climate models</topic><topic>Climate science</topic><topic>Corn</topic><topic>Crop production</topic><topic>Crops</topic><topic>Crops, Agricultural - growth & development</topic><topic>Economic sociology</topic><topic>Global climate models</topic><topic>Glycine max - growth & development</topic><topic>Nonlinear Dynamics</topic><topic>Oryza - growth & development</topic><topic>Oryza sativa</topic><topic>Production. Distribution. Advertising</topic><topic>Regression Analysis</topic><topic>Rice</topic><topic>Rural and urban sociology</topic><topic>Rural sociology</topic><topic>Seasons</topic><topic>Sociology</topic><topic>Sociology of economy and development</topic><topic>Soybeans</topic><topic>Temperature</topic><topic>Triticum - growth & development</topic><topic>Triticum aestivum</topic><topic>Weather</topic><topic>Wheat</topic><topic>Zea mays</topic><topic>Zea mays - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobell, David B.</creatorcontrib><creatorcontrib>Schlenker, Wolfram</creatorcontrib><creatorcontrib>Costa-Roberts, Justin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobell, David B.</au><au>Schlenker, Wolfram</au><au>Costa-Roberts, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate Trends and Global Crop Production Since 1980</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-07-29</date><risdate>2011</risdate><volume>333</volume><issue>6042</issue><spage>616</spage><epage>620</epage><pages>616-620</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>21551030</pmid><doi>10.1126/science.1204531</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2011-07, Vol.333 (6042), p.616-620 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_899143965 |
source | MEDLINE; Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Agricultural production Climate Climate Change Climate change adaptation Climate models Climate science Corn Crop production Crops Crops, Agricultural - growth & development Economic sociology Global climate models Glycine max - growth & development Nonlinear Dynamics Oryza - growth & development Oryza sativa Production. Distribution. Advertising Regression Analysis Rice Rural and urban sociology Rural sociology Seasons Sociology Sociology of economy and development Soybeans Temperature Triticum - growth & development Triticum aestivum Weather Wheat Zea mays Zea mays - growth & development |
title | Climate Trends and Global Crop Production Since 1980 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20Trends%20and%20Global%20Crop%20Production%20Since%201980&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lobell,%20David%20B.&rft.date=2011-07-29&rft.volume=333&rft.issue=6042&rft.spage=616&rft.epage=620&rft.pages=616-620&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1204531&rft_dat=%3Cjstor_proqu%3E27978350%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879706592&rft_id=info:pmid/21551030&rft_jstor_id=27978350&rfr_iscdi=true |