Climate Trends and Global Crop Production Since 1980

Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2011-07, Vol.333 (6042), p.616-620
Hauptverfasser: Lobell, David B., Schlenker, Wolfram, Costa-Roberts, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 6042
container_start_page 616
container_title Science (American Association for the Advancement of Science)
container_volume 333
creator Lobell, David B.
Schlenker, Wolfram
Costa-Roberts, Justin
description Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.
doi_str_mv 10.1126/science.1204531
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_899143965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27978350</jstor_id><sourcerecordid>27978350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-4df85a817651990b763a4c907421ac54c53341b2a397e6fbc51ec3980833ca8a3</originalsourceid><addsrcrecordid>eNpd0M1LwzAYBvAgipvTsyelCOKp25vPJkcZfsFAwXkOaZpCR9fMpD343xtZdeAph_eXJ28ehC4xzDEmYhFt4zrr5pgA4xQfoSkGxXNFgB6jKQAVuYSCT9BZjBuANFP0FE0I5hwDhSliy7bZmt5l6-C6Kmamq7Kn1pemzZbB77K34KvB9o3vsvcmvZRhJeEcndSmje5iPGfo4_FhvXzOV69PL8v7VW65gD5nVS25kbgQHCsFZSGoYVZBwQg2ljPLKWW4JIaqwom6tBw7S1O-pNQaaegM3e1zd8F_Di72ettE69rWdM4PUUulMKNK8CRv_smNH0KXltOyUAUIrkhCiz2ywccYXK13IX0-fGkM-qdOPdapxzrTjesxdii3rvrzv_0lcDsCE61p62A628SDS9sREDK5q73bxN6HwzztJikH-g3XvoQ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879706592</pqid></control><display><type>article</type><title>Climate Trends and Global Crop Production Since 1980</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Lobell, David B. ; Schlenker, Wolfram ; Costa-Roberts, Justin</creator><creatorcontrib>Lobell, David B. ; Schlenker, Wolfram ; Costa-Roberts, Justin</creatorcontrib><description>Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1204531</identifier><identifier>PMID: 21551030</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Agricultural production ; Climate ; Climate Change ; Climate change adaptation ; Climate models ; Climate science ; Corn ; Crop production ; Crops ; Crops, Agricultural - growth &amp; development ; Economic sociology ; Global climate models ; Glycine max - growth &amp; development ; Nonlinear Dynamics ; Oryza - growth &amp; development ; Oryza sativa ; Production. Distribution. Advertising ; Regression Analysis ; Rice ; Rural and urban sociology ; Rural sociology ; Seasons ; Sociology ; Sociology of economy and development ; Soybeans ; Temperature ; Triticum - growth &amp; development ; Triticum aestivum ; Weather ; Wheat ; Zea mays ; Zea mays - growth &amp; development</subject><ispartof>Science (American Association for the Advancement of Science), 2011-07, Vol.333 (6042), p.616-620</ispartof><rights>Copyright © 2011 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-4df85a817651990b763a4c907421ac54c53341b2a397e6fbc51ec3980833ca8a3</citedby><cites>FETCH-LOGICAL-c560t-4df85a817651990b763a4c907421ac54c53341b2a397e6fbc51ec3980833ca8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27978350$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27978350$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24392068$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21551030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lobell, David B.</creatorcontrib><creatorcontrib>Schlenker, Wolfram</creatorcontrib><creatorcontrib>Costa-Roberts, Justin</creatorcontrib><title>Climate Trends and Global Crop Production Since 1980</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.</description><subject>Agricultural production</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate change adaptation</subject><subject>Climate models</subject><subject>Climate science</subject><subject>Corn</subject><subject>Crop production</subject><subject>Crops</subject><subject>Crops, Agricultural - growth &amp; development</subject><subject>Economic sociology</subject><subject>Global climate models</subject><subject>Glycine max - growth &amp; development</subject><subject>Nonlinear Dynamics</subject><subject>Oryza - growth &amp; development</subject><subject>Oryza sativa</subject><subject>Production. Distribution. Advertising</subject><subject>Regression Analysis</subject><subject>Rice</subject><subject>Rural and urban sociology</subject><subject>Rural sociology</subject><subject>Seasons</subject><subject>Sociology</subject><subject>Sociology of economy and development</subject><subject>Soybeans</subject><subject>Temperature</subject><subject>Triticum - growth &amp; development</subject><subject>Triticum aestivum</subject><subject>Weather</subject><subject>Wheat</subject><subject>Zea mays</subject><subject>Zea mays - growth &amp; development</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0M1LwzAYBvAgipvTsyelCOKp25vPJkcZfsFAwXkOaZpCR9fMpD343xtZdeAph_eXJ28ehC4xzDEmYhFt4zrr5pgA4xQfoSkGxXNFgB6jKQAVuYSCT9BZjBuANFP0FE0I5hwDhSliy7bZmt5l6-C6Kmamq7Kn1pemzZbB77K34KvB9o3vsvcmvZRhJeEcndSmje5iPGfo4_FhvXzOV69PL8v7VW65gD5nVS25kbgQHCsFZSGoYVZBwQg2ljPLKWW4JIaqwom6tBw7S1O-pNQaaegM3e1zd8F_Di72ettE69rWdM4PUUulMKNK8CRv_smNH0KXltOyUAUIrkhCiz2ywccYXK13IX0-fGkM-qdOPdapxzrTjesxdii3rvrzv_0lcDsCE61p62A628SDS9sREDK5q73bxN6HwzztJikH-g3XvoQ6</recordid><startdate>20110729</startdate><enddate>20110729</enddate><creator>Lobell, David B.</creator><creator>Schlenker, Wolfram</creator><creator>Costa-Roberts, Justin</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope></search><sort><creationdate>20110729</creationdate><title>Climate Trends and Global Crop Production Since 1980</title><author>Lobell, David B. ; Schlenker, Wolfram ; Costa-Roberts, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-4df85a817651990b763a4c907421ac54c53341b2a397e6fbc51ec3980833ca8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural production</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate change adaptation</topic><topic>Climate models</topic><topic>Climate science</topic><topic>Corn</topic><topic>Crop production</topic><topic>Crops</topic><topic>Crops, Agricultural - growth &amp; development</topic><topic>Economic sociology</topic><topic>Global climate models</topic><topic>Glycine max - growth &amp; development</topic><topic>Nonlinear Dynamics</topic><topic>Oryza - growth &amp; development</topic><topic>Oryza sativa</topic><topic>Production. Distribution. Advertising</topic><topic>Regression Analysis</topic><topic>Rice</topic><topic>Rural and urban sociology</topic><topic>Rural sociology</topic><topic>Seasons</topic><topic>Sociology</topic><topic>Sociology of economy and development</topic><topic>Soybeans</topic><topic>Temperature</topic><topic>Triticum - growth &amp; development</topic><topic>Triticum aestivum</topic><topic>Weather</topic><topic>Wheat</topic><topic>Zea mays</topic><topic>Zea mays - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobell, David B.</creatorcontrib><creatorcontrib>Schlenker, Wolfram</creatorcontrib><creatorcontrib>Costa-Roberts, Justin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobell, David B.</au><au>Schlenker, Wolfram</au><au>Costa-Roberts, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate Trends and Global Crop Production Since 1980</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-07-29</date><risdate>2011</risdate><volume>333</volume><issue>6042</issue><spage>616</spage><epage>620</epage><pages>616-620</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>21551030</pmid><doi>10.1126/science.1204531</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2011-07, Vol.333 (6042), p.616-620
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_899143965
source MEDLINE; Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Agricultural production
Climate
Climate Change
Climate change adaptation
Climate models
Climate science
Corn
Crop production
Crops
Crops, Agricultural - growth & development
Economic sociology
Global climate models
Glycine max - growth & development
Nonlinear Dynamics
Oryza - growth & development
Oryza sativa
Production. Distribution. Advertising
Regression Analysis
Rice
Rural and urban sociology
Rural sociology
Seasons
Sociology
Sociology of economy and development
Soybeans
Temperature
Triticum - growth & development
Triticum aestivum
Weather
Wheat
Zea mays
Zea mays - growth & development
title Climate Trends and Global Crop Production Since 1980
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20Trends%20and%20Global%20Crop%20Production%20Since%201980&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lobell,%20David%20B.&rft.date=2011-07-29&rft.volume=333&rft.issue=6042&rft.spage=616&rft.epage=620&rft.pages=616-620&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1204531&rft_dat=%3Cjstor_proqu%3E27978350%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879706592&rft_id=info:pmid/21551030&rft_jstor_id=27978350&rfr_iscdi=true