Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury

► Polarity effect of a pulsed corona discharge (PCD) for Hg 0 oxidation. ► No difference in the energy yield of Hg 0 oxidation at both polarities. ► Positive PCD process playing essential key role in Hg 0 oxidation. ► Electrical precipitator (EP) consuming less energy than positive PCD. ► EP not pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2011-08, Vol.84 (9), p.1285-1289
Hauptverfasser: Byun, Youngchul, Koh, Dong Jun, Shin, Dong Nam, Cho, Moohyun, Namkung, Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1289
container_issue 9
container_start_page 1285
container_title Chemosphere (Oxford)
container_volume 84
creator Byun, Youngchul
Koh, Dong Jun
Shin, Dong Nam
Cho, Moohyun
Namkung, Won
description ► Polarity effect of a pulsed corona discharge (PCD) for Hg 0 oxidation. ► No difference in the energy yield of Hg 0 oxidation at both polarities. ► Positive PCD process playing essential key role in Hg 0 oxidation. ► Electrical precipitator (EP) consuming less energy than positive PCD. ► EP not playing essential key role in Hg 0 oxidation. The effect of polarity on the oxidation of Hg 0 was examined in the presence of O 2 via a pulsed corona discharge (PCD). The experimental result showed no difference in the energy yield of Hg 0 oxidation at both positive and negative PCDs (∼8 μg Hg W h −1 at following conditions: total flow rate = 2 L min −1 (Hg 0 = 50 μg N m −3, O 2 = 10%, and N 2 balance), temperature = 150 °C, and specific energy density = 5–15 W h N m −3). This suggests that the positive PCD process used to control gaseous air pollutants may play an essential key role in Hg 0 oxidation because it consumes enough energy (∼15 W h N m −3) but an electrical precipitator could not because it consumes less energy (∼0.3 W h N m −3) to oxidize Hg 0.
doi_str_mv 10.1016/j.chemosphere.2011.05.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899141546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004565351100614X</els_id><sourcerecordid>880716491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-118d13359e6aa96e17e3f00f431c0d73d297bf5d005a4c8f081e784a578d3b553</originalsourceid><addsrcrecordid>eNqN0cuu0zAQgOEIgTjlwCuAWSDYJMzUdhIvUcVNOhJIcBasLNcet6mSuNgJom-Po5bLClhlkW8mo_xF8RShQsD65aGyexpCOu4pUrUGxApkBULcKVbYNqrEtWrvFisAIctacnlVPEjpAJCHpbpfXK2xAeDYrIovH0NvYjedGHlPdmLBs-PcJ3LMhhhGw1yX7N7EHTEfIpv2xML3zpmpC-OCdyZRmBOjngYaJ9OzgaKd4-lhcc-bvOjR5Xld3L55_Xnzrrz58Pb95tVNaYWSU4nYOuRcKqqNUTVhQ9wDeMHRgmu4W6tm66UDkEbY1kOL1LTCyKZ1fCslvy6en_ceY_g6U5r0kC-mvjfjcphulUKBUtT_li00WAuFWb74q8S6QSEh_9lM1ZnaGFKK5PUxdoOJJ42gl1r6oP-opZdaGqTOtfLs48tn5u1A7tfkzzwZPLsAk6zpfTSj7dJvJwSqvDC7J2fnTdBmF7O5_ZRfiKW4arnKYnMWlFN86yjqZDsaLbku5uzahe4_Dv4Buz3Bcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671450535</pqid></control><display><type>article</type><title>Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Byun, Youngchul ; Koh, Dong Jun ; Shin, Dong Nam ; Cho, Moohyun ; Namkung, Won</creator><creatorcontrib>Byun, Youngchul ; Koh, Dong Jun ; Shin, Dong Nam ; Cho, Moohyun ; Namkung, Won</creatorcontrib><description>► Polarity effect of a pulsed corona discharge (PCD) for Hg 0 oxidation. ► No difference in the energy yield of Hg 0 oxidation at both polarities. ► Positive PCD process playing essential key role in Hg 0 oxidation. ► Electrical precipitator (EP) consuming less energy than positive PCD. ► EP not playing essential key role in Hg 0 oxidation. The effect of polarity on the oxidation of Hg 0 was examined in the presence of O 2 via a pulsed corona discharge (PCD). The experimental result showed no difference in the energy yield of Hg 0 oxidation at both positive and negative PCDs (∼8 μg Hg W h −1 at following conditions: total flow rate = 2 L min −1 (Hg 0 = 50 μg N m −3, O 2 = 10%, and N 2 balance), temperature = 150 °C, and specific energy density = 5–15 W h N m −3). This suggests that the positive PCD process used to control gaseous air pollutants may play an essential key role in Hg 0 oxidation because it consumes enough energy (∼15 W h N m −3) but an electrical precipitator could not because it consumes less energy (∼0.3 W h N m −3) to oxidize Hg 0.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2011.05.044</identifier><identifier>PMID: 21700317</identifier><identifier>CODEN: CMSHAF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>air ; Applied sciences ; Consumption ; Corona discharge ; Coronas ; Electric Conductivity ; Electrochemistry - methods ; Elemental mercury ; energy ; Energy consumption ; Energy use ; Exact sciences and technology ; Gases - chemistry ; mercury ; Mercury - chemistry ; Oxidation ; Oxidation-Reduction ; Oxygen - chemistry ; PCD ; Polarity ; Pollutants ; Pollution ; process control ; Pulse ; specific energy ; yields</subject><ispartof>Chemosphere (Oxford), 2011-08, Vol.84 (9), p.1285-1289</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-118d13359e6aa96e17e3f00f431c0d73d297bf5d005a4c8f081e784a578d3b553</citedby><cites>FETCH-LOGICAL-c495t-118d13359e6aa96e17e3f00f431c0d73d297bf5d005a4c8f081e784a578d3b553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2011.05.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24419201$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21700317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Byun, Youngchul</creatorcontrib><creatorcontrib>Koh, Dong Jun</creatorcontrib><creatorcontrib>Shin, Dong Nam</creatorcontrib><creatorcontrib>Cho, Moohyun</creatorcontrib><creatorcontrib>Namkung, Won</creatorcontrib><title>Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>► Polarity effect of a pulsed corona discharge (PCD) for Hg 0 oxidation. ► No difference in the energy yield of Hg 0 oxidation at both polarities. ► Positive PCD process playing essential key role in Hg 0 oxidation. ► Electrical precipitator (EP) consuming less energy than positive PCD. ► EP not playing essential key role in Hg 0 oxidation. The effect of polarity on the oxidation of Hg 0 was examined in the presence of O 2 via a pulsed corona discharge (PCD). The experimental result showed no difference in the energy yield of Hg 0 oxidation at both positive and negative PCDs (∼8 μg Hg W h −1 at following conditions: total flow rate = 2 L min −1 (Hg 0 = 50 μg N m −3, O 2 = 10%, and N 2 balance), temperature = 150 °C, and specific energy density = 5–15 W h N m −3). This suggests that the positive PCD process used to control gaseous air pollutants may play an essential key role in Hg 0 oxidation because it consumes enough energy (∼15 W h N m −3) but an electrical precipitator could not because it consumes less energy (∼0.3 W h N m −3) to oxidize Hg 0.</description><subject>air</subject><subject>Applied sciences</subject><subject>Consumption</subject><subject>Corona discharge</subject><subject>Coronas</subject><subject>Electric Conductivity</subject><subject>Electrochemistry - methods</subject><subject>Elemental mercury</subject><subject>energy</subject><subject>Energy consumption</subject><subject>Energy use</subject><subject>Exact sciences and technology</subject><subject>Gases - chemistry</subject><subject>mercury</subject><subject>Mercury - chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><subject>PCD</subject><subject>Polarity</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>process control</subject><subject>Pulse</subject><subject>specific energy</subject><subject>yields</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0cuu0zAQgOEIgTjlwCuAWSDYJMzUdhIvUcVNOhJIcBasLNcet6mSuNgJom-Po5bLClhlkW8mo_xF8RShQsD65aGyexpCOu4pUrUGxApkBULcKVbYNqrEtWrvFisAIctacnlVPEjpAJCHpbpfXK2xAeDYrIovH0NvYjedGHlPdmLBs-PcJ3LMhhhGw1yX7N7EHTEfIpv2xML3zpmpC-OCdyZRmBOjngYaJ9OzgaKd4-lhcc-bvOjR5Xld3L55_Xnzrrz58Pb95tVNaYWSU4nYOuRcKqqNUTVhQ9wDeMHRgmu4W6tm66UDkEbY1kOL1LTCyKZ1fCslvy6en_ceY_g6U5r0kC-mvjfjcphulUKBUtT_li00WAuFWb74q8S6QSEh_9lM1ZnaGFKK5PUxdoOJJ42gl1r6oP-opZdaGqTOtfLs48tn5u1A7tfkzzwZPLsAk6zpfTSj7dJvJwSqvDC7J2fnTdBmF7O5_ZRfiKW4arnKYnMWlFN86yjqZDsaLbku5uzahe4_Dv4Buz3Bcg</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Byun, Youngchul</creator><creator>Koh, Dong Jun</creator><creator>Shin, Dong Nam</creator><creator>Cho, Moohyun</creator><creator>Namkung, Won</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7TG</scope><scope>7TV</scope><scope>KL.</scope><scope>SOI</scope></search><sort><creationdate>20110801</creationdate><title>Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury</title><author>Byun, Youngchul ; Koh, Dong Jun ; Shin, Dong Nam ; Cho, Moohyun ; Namkung, Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-118d13359e6aa96e17e3f00f431c0d73d297bf5d005a4c8f081e784a578d3b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>air</topic><topic>Applied sciences</topic><topic>Consumption</topic><topic>Corona discharge</topic><topic>Coronas</topic><topic>Electric Conductivity</topic><topic>Electrochemistry - methods</topic><topic>Elemental mercury</topic><topic>energy</topic><topic>Energy consumption</topic><topic>Energy use</topic><topic>Exact sciences and technology</topic><topic>Gases - chemistry</topic><topic>mercury</topic><topic>Mercury - chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><topic>PCD</topic><topic>Polarity</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>process control</topic><topic>Pulse</topic><topic>specific energy</topic><topic>yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byun, Youngchul</creatorcontrib><creatorcontrib>Koh, Dong Jun</creatorcontrib><creatorcontrib>Shin, Dong Nam</creatorcontrib><creatorcontrib>Cho, Moohyun</creatorcontrib><creatorcontrib>Namkung, Won</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byun, Youngchul</au><au>Koh, Dong Jun</au><au>Shin, Dong Nam</au><au>Cho, Moohyun</au><au>Namkung, Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>84</volume><issue>9</issue><spage>1285</spage><epage>1289</epage><pages>1285-1289</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><coden>CMSHAF</coden><abstract>► Polarity effect of a pulsed corona discharge (PCD) for Hg 0 oxidation. ► No difference in the energy yield of Hg 0 oxidation at both polarities. ► Positive PCD process playing essential key role in Hg 0 oxidation. ► Electrical precipitator (EP) consuming less energy than positive PCD. ► EP not playing essential key role in Hg 0 oxidation. The effect of polarity on the oxidation of Hg 0 was examined in the presence of O 2 via a pulsed corona discharge (PCD). The experimental result showed no difference in the energy yield of Hg 0 oxidation at both positive and negative PCDs (∼8 μg Hg W h −1 at following conditions: total flow rate = 2 L min −1 (Hg 0 = 50 μg N m −3, O 2 = 10%, and N 2 balance), temperature = 150 °C, and specific energy density = 5–15 W h N m −3). This suggests that the positive PCD process used to control gaseous air pollutants may play an essential key role in Hg 0 oxidation because it consumes enough energy (∼15 W h N m −3) but an electrical precipitator could not because it consumes less energy (∼0.3 W h N m −3) to oxidize Hg 0.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21700317</pmid><doi>10.1016/j.chemosphere.2011.05.044</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2011-08, Vol.84 (9), p.1285-1289
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_899141546
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects air
Applied sciences
Consumption
Corona discharge
Coronas
Electric Conductivity
Electrochemistry - methods
Elemental mercury
energy
Energy consumption
Energy use
Exact sciences and technology
Gases - chemistry
mercury
Mercury - chemistry
Oxidation
Oxidation-Reduction
Oxygen - chemistry
PCD
Polarity
Pollutants
Pollution
process control
Pulse
specific energy
yields
title Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarity%20effect%20of%20pulsed%20corona%20discharge%20for%20the%20oxidation%20of%20gaseous%20elemental%20mercury&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Byun,%20Youngchul&rft.date=2011-08-01&rft.volume=84&rft.issue=9&rft.spage=1285&rft.epage=1289&rft.pages=1285-1289&rft.issn=0045-6535&rft.eissn=1879-1298&rft.coden=CMSHAF&rft_id=info:doi/10.1016/j.chemosphere.2011.05.044&rft_dat=%3Cproquest_cross%3E880716491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671450535&rft_id=info:pmid/21700317&rft_els_id=S004565351100614X&rfr_iscdi=true