The significance of turbulent flow representation in single-continuum models

Karst aquifers exhibit highly conductive features caused from rock dissolution processes. Flow within these structures can become turbulent and therefore can be expressed by nonlinear gradient functions. One way to account for these effects is by coupling a continuum model with a conduit network. Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2011-09, Vol.47 (9), p.n/a
Hauptverfasser: Reimann, Thomas, Rehrl, Christoph, Shoemaker, W. Barclay, Geyer, Tobias, Birk, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Water resources research
container_volume 47
creator Reimann, Thomas
Rehrl, Christoph
Shoemaker, W. Barclay
Geyer, Tobias
Birk, Steffen
description Karst aquifers exhibit highly conductive features caused from rock dissolution processes. Flow within these structures can become turbulent and therefore can be expressed by nonlinear gradient functions. One way to account for these effects is by coupling a continuum model with a conduit network. Alternatively, turbulent flow can be considered by adapting the hydraulic conductivity within the continuum model. Consequently, the significance of turbulent flow on the dynamic behavior of karst springs is investigated by an enhanced single‐continuum model that results in conduit‐type flow in continuum cells (CTFC). The single‐continuum approach CTFC represents laminar and turbulent flow as well as more complex hybrid models that require additional programming and numerical efforts. A parameter study is conducted to investigate the effects of turbulent flow on the response of karst springs to recharge events using the new CTFC approach, existing hybrid models, and MODFLOW‐2005. Results reflect the importance of representing (1) turbulent flow in karst conduits and (2) the exchange between conduits and continuum cells. More specifically, laminar models overestimate maximum spring discharge and underestimate hydraulic gradients within the conduit. It follows that aquifer properties inferred from spring hydrographs are potentially impaired by ignoring flow effects due to turbulence. The exchange factor used for hybrid models is necessary to account for the scale dependency between hydraulic properties of the matrix continuum and conduits. This functionality, which is not included in CTFC, can be mimicked by appropriate use of the Horizontal Flow Barrier package for MODFLOW. Key Points Simulation of turbulent groundwater flow with a single continuum model The single continuum model is able to reflect the dual behavior of karst Water exchange between conduits and continuum is important for karst modeling
doi_str_mv 10.1029/2010WR010133
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899136640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525003771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3994-2872744ab4a8d7210a4b7ba310617a3dbea87f0ea44c1c056d512154f802ea833</originalsourceid><addsrcrecordid>eNp9kFFLwzAQgIMoOKdv_oDiiy9WkyZtmkcZbgpToUwGewlpm87MNJlJy9y_N1IR8cGXO477vrvjADhH8BrBhN0kEMFlEQLC-ACMECMkpoziQzCCkOAYYUaPwYn3GwgRSTM6AvPFq4y8WhvVqEqYSka2ibrelb2WposabXeRk1snfShFp6yJlAmCWWsZV9Z0yvR9G7W2ltqfgqNGaC_PvvMYvEzvFpP7eP48e5jczmOBGSNxktOEEiJKIvKaJggKUtJSYAQzRAWuSyly2kApCKlQBdOsTlGCUtLkMAktjMfgcpi7dfa9l77jrfKV1FoYaXvPc8YQzjICA3nxh9zY3plwHGcwrCaEZgG6GqDKWe-dbPjWqVa4PUeQfz2W_35swPGA75SW-39ZviwmBUoYJcGKB0v5Tn78WMK98YximvLl04yvpsXqEU9nPMOfFqSITw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907214476</pqid></control><display><type>article</type><title>The significance of turbulent flow representation in single-continuum models</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Reimann, Thomas ; Rehrl, Christoph ; Shoemaker, W. Barclay ; Geyer, Tobias ; Birk, Steffen</creator><creatorcontrib>Reimann, Thomas ; Rehrl, Christoph ; Shoemaker, W. Barclay ; Geyer, Tobias ; Birk, Steffen</creatorcontrib><description>Karst aquifers exhibit highly conductive features caused from rock dissolution processes. Flow within these structures can become turbulent and therefore can be expressed by nonlinear gradient functions. One way to account for these effects is by coupling a continuum model with a conduit network. Alternatively, turbulent flow can be considered by adapting the hydraulic conductivity within the continuum model. Consequently, the significance of turbulent flow on the dynamic behavior of karst springs is investigated by an enhanced single‐continuum model that results in conduit‐type flow in continuum cells (CTFC). The single‐continuum approach CTFC represents laminar and turbulent flow as well as more complex hybrid models that require additional programming and numerical efforts. A parameter study is conducted to investigate the effects of turbulent flow on the response of karst springs to recharge events using the new CTFC approach, existing hybrid models, and MODFLOW‐2005. Results reflect the importance of representing (1) turbulent flow in karst conduits and (2) the exchange between conduits and continuum cells. More specifically, laminar models overestimate maximum spring discharge and underestimate hydraulic gradients within the conduit. It follows that aquifer properties inferred from spring hydrographs are potentially impaired by ignoring flow effects due to turbulence. The exchange factor used for hybrid models is necessary to account for the scale dependency between hydraulic properties of the matrix continuum and conduits. This functionality, which is not included in CTFC, can be mimicked by appropriate use of the Horizontal Flow Barrier package for MODFLOW. Key Points Simulation of turbulent groundwater flow with a single continuum model The single continuum model is able to reflect the dual behavior of karst Water exchange between conduits and continuum is important for karst modeling</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2010WR010133</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aquifers ; Conduits ; dual porosity ; Groundwater ; Groundwater flow ; Hydraulic gradient ; Hydraulic properties ; Hydraulics ; Hydrology ; Karst ; karst hydrology ; numerical modeling ; Reynolds number ; Turbulent flow ; Water springs</subject><ispartof>Water resources research, 2011-09, Vol.47 (9), p.n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3994-2872744ab4a8d7210a4b7ba310617a3dbea87f0ea44c1c056d512154f802ea833</citedby><cites>FETCH-LOGICAL-a3994-2872744ab4a8d7210a4b7ba310617a3dbea87f0ea44c1c056d512154f802ea833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010WR010133$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010WR010133$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,11497,27907,27908,45557,45558,46451,46875</link.rule.ids></links><search><creatorcontrib>Reimann, Thomas</creatorcontrib><creatorcontrib>Rehrl, Christoph</creatorcontrib><creatorcontrib>Shoemaker, W. Barclay</creatorcontrib><creatorcontrib>Geyer, Tobias</creatorcontrib><creatorcontrib>Birk, Steffen</creatorcontrib><title>The significance of turbulent flow representation in single-continuum models</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Karst aquifers exhibit highly conductive features caused from rock dissolution processes. Flow within these structures can become turbulent and therefore can be expressed by nonlinear gradient functions. One way to account for these effects is by coupling a continuum model with a conduit network. Alternatively, turbulent flow can be considered by adapting the hydraulic conductivity within the continuum model. Consequently, the significance of turbulent flow on the dynamic behavior of karst springs is investigated by an enhanced single‐continuum model that results in conduit‐type flow in continuum cells (CTFC). The single‐continuum approach CTFC represents laminar and turbulent flow as well as more complex hybrid models that require additional programming and numerical efforts. A parameter study is conducted to investigate the effects of turbulent flow on the response of karst springs to recharge events using the new CTFC approach, existing hybrid models, and MODFLOW‐2005. Results reflect the importance of representing (1) turbulent flow in karst conduits and (2) the exchange between conduits and continuum cells. More specifically, laminar models overestimate maximum spring discharge and underestimate hydraulic gradients within the conduit. It follows that aquifer properties inferred from spring hydrographs are potentially impaired by ignoring flow effects due to turbulence. The exchange factor used for hybrid models is necessary to account for the scale dependency between hydraulic properties of the matrix continuum and conduits. This functionality, which is not included in CTFC, can be mimicked by appropriate use of the Horizontal Flow Barrier package for MODFLOW. Key Points Simulation of turbulent groundwater flow with a single continuum model The single continuum model is able to reflect the dual behavior of karst Water exchange between conduits and continuum is important for karst modeling</description><subject>Aquifers</subject><subject>Conduits</subject><subject>dual porosity</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Hydraulic gradient</subject><subject>Hydraulic properties</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Karst</subject><subject>karst hydrology</subject><subject>numerical modeling</subject><subject>Reynolds number</subject><subject>Turbulent flow</subject><subject>Water springs</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kFFLwzAQgIMoOKdv_oDiiy9WkyZtmkcZbgpToUwGewlpm87MNJlJy9y_N1IR8cGXO477vrvjADhH8BrBhN0kEMFlEQLC-ACMECMkpoziQzCCkOAYYUaPwYn3GwgRSTM6AvPFq4y8WhvVqEqYSka2ibrelb2WposabXeRk1snfShFp6yJlAmCWWsZV9Z0yvR9G7W2ltqfgqNGaC_PvvMYvEzvFpP7eP48e5jczmOBGSNxktOEEiJKIvKaJggKUtJSYAQzRAWuSyly2kApCKlQBdOsTlGCUtLkMAktjMfgcpi7dfa9l77jrfKV1FoYaXvPc8YQzjICA3nxh9zY3plwHGcwrCaEZgG6GqDKWe-dbPjWqVa4PUeQfz2W_35swPGA75SW-39ZviwmBUoYJcGKB0v5Tn78WMK98YximvLl04yvpsXqEU9nPMOfFqSITw</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Reimann, Thomas</creator><creator>Rehrl, Christoph</creator><creator>Shoemaker, W. Barclay</creator><creator>Geyer, Tobias</creator><creator>Birk, Steffen</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7N</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201109</creationdate><title>The significance of turbulent flow representation in single-continuum models</title><author>Reimann, Thomas ; Rehrl, Christoph ; Shoemaker, W. Barclay ; Geyer, Tobias ; Birk, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3994-2872744ab4a8d7210a4b7ba310617a3dbea87f0ea44c1c056d512154f802ea833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aquifers</topic><topic>Conduits</topic><topic>dual porosity</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Hydraulic gradient</topic><topic>Hydraulic properties</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Karst</topic><topic>karst hydrology</topic><topic>numerical modeling</topic><topic>Reynolds number</topic><topic>Turbulent flow</topic><topic>Water springs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reimann, Thomas</creatorcontrib><creatorcontrib>Rehrl, Christoph</creatorcontrib><creatorcontrib>Shoemaker, W. Barclay</creatorcontrib><creatorcontrib>Geyer, Tobias</creatorcontrib><creatorcontrib>Birk, Steffen</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reimann, Thomas</au><au>Rehrl, Christoph</au><au>Shoemaker, W. Barclay</au><au>Geyer, Tobias</au><au>Birk, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The significance of turbulent flow representation in single-continuum models</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2011-09</date><risdate>2011</risdate><volume>47</volume><issue>9</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Karst aquifers exhibit highly conductive features caused from rock dissolution processes. Flow within these structures can become turbulent and therefore can be expressed by nonlinear gradient functions. One way to account for these effects is by coupling a continuum model with a conduit network. Alternatively, turbulent flow can be considered by adapting the hydraulic conductivity within the continuum model. Consequently, the significance of turbulent flow on the dynamic behavior of karst springs is investigated by an enhanced single‐continuum model that results in conduit‐type flow in continuum cells (CTFC). The single‐continuum approach CTFC represents laminar and turbulent flow as well as more complex hybrid models that require additional programming and numerical efforts. A parameter study is conducted to investigate the effects of turbulent flow on the response of karst springs to recharge events using the new CTFC approach, existing hybrid models, and MODFLOW‐2005. Results reflect the importance of representing (1) turbulent flow in karst conduits and (2) the exchange between conduits and continuum cells. More specifically, laminar models overestimate maximum spring discharge and underestimate hydraulic gradients within the conduit. It follows that aquifer properties inferred from spring hydrographs are potentially impaired by ignoring flow effects due to turbulence. The exchange factor used for hybrid models is necessary to account for the scale dependency between hydraulic properties of the matrix continuum and conduits. This functionality, which is not included in CTFC, can be mimicked by appropriate use of the Horizontal Flow Barrier package for MODFLOW. Key Points Simulation of turbulent groundwater flow with a single continuum model The single continuum model is able to reflect the dual behavior of karst Water exchange between conduits and continuum is important for karst modeling</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010WR010133</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2011-09, Vol.47 (9), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_899136640
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library
subjects Aquifers
Conduits
dual porosity
Groundwater
Groundwater flow
Hydraulic gradient
Hydraulic properties
Hydraulics
Hydrology
Karst
karst hydrology
numerical modeling
Reynolds number
Turbulent flow
Water springs
title The significance of turbulent flow representation in single-continuum models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20significance%20of%20turbulent%20flow%20representation%20in%20single-continuum%20models&rft.jtitle=Water%20resources%20research&rft.au=Reimann,%20Thomas&rft.date=2011-09&rft.volume=47&rft.issue=9&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2010WR010133&rft_dat=%3Cproquest_cross%3E2525003771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907214476&rft_id=info:pmid/&rfr_iscdi=true