Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes
Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15–25% of the feed water...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2011-10, Vol.45 (16), p.4951-4959 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4959 |
---|---|
container_issue | 16 |
container_start_page | 4951 |
container_title | Water research (Oxford) |
container_volume | 45 |
creator | Bagastyo, Arseto Y. Radjenovic, Jelena Mu, Yang Rozendal, René A. Batstone, Damien J. Rabaey, Korneel |
description | Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15–25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO
2–Ta
2O
5, RuO
2–IrO
2, Pt–IrO
2, PbO
2, and SnO
2–Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt–IrO
2 anodes, followed by the Ti/SnO
2–Sb and Ti/PbO
2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl
2/HClO/ClO
−). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO
2–Sb and Ti/Pt–IrO
2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L
−1) was measured for the Ti/SnO
2–Sb electrode, after 0.55 Ah L
−1 of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products.
► Five different anodes were evaluated for the electrochemical oxidation of ROC. ► Ti/Pt–IrO
2 and Ti/SnO
2–Sb outperformed the other electrodes tested in our study. ► The highest formation of THMs and HAAs was observed for Ti/Pt–IrO
2 and Ti/SnO
2–Sb. ► Indirect oxidation by chlorine was a dominant oxidation mechanism for all anodes. |
doi_str_mv | 10.1016/j.watres.2011.06.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899136223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135411003824</els_id><sourcerecordid>1777106299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-4ff0d5a9454e9b9ebab842d960c9cc6ba4a7b9c570c1aef7699915ae4b3770303</originalsourceid><addsrcrecordid>eNqF0k1v1DAQgGELgehS-AcIfEGUQ8I48Ud8QUJVW5Ba9QA9W44zAa-SuNjeUv49XmWBWzlFsp7JWHlDyEsGNQMm32_rnzZHTHUDjNUga2j1I7JhndJVw3n3mGwAeFuxVvAj8iylLQA0TaufkqOGddAwUBuynE3ocgzuO87e2YmGez_Y7MNCw0gj3mFMSEOaQ_KJurA4XHK0uZwtdPb3ONAZ82EO6cnV1fU7mn22i9_NxRc5UFx3DJiekyejnRK-ODyPyc352dfTT9Xl9cXn04-XleMd5IqPIwzCai446l5jb_uON4OW4LRzsrfcql47ocAxi6OSWmsmLPK-VQpaaI_J2_W9tzH82GHKZvbJ4TTZBcMuma74Vpav8X_ZKSW04KrIkwclU0oxkI3WhfKVuhhSijia2-hnG38ZBmZfz2zNWs_s6xmQptQrY68OG3b9jMPfoT-5CnhzADaVWGO0i_Ppn-MCOsX27vXqRhuM_RaLuflSNonyCzDQci8-rAJLhTuP0STnsdQdfCyxzBD8w3f9Db0exCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777106299</pqid></control><display><type>article</type><title>Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bagastyo, Arseto Y. ; Radjenovic, Jelena ; Mu, Yang ; Rozendal, René A. ; Batstone, Damien J. ; Rabaey, Korneel</creator><creatorcontrib>Bagastyo, Arseto Y. ; Radjenovic, Jelena ; Mu, Yang ; Rozendal, René A. ; Batstone, Damien J. ; Rabaey, Korneel</creatorcontrib><description>Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15–25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO
2–Ta
2O
5, RuO
2–IrO
2, Pt–IrO
2, PbO
2, and SnO
2–Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt–IrO
2 anodes, followed by the Ti/SnO
2–Sb and Ti/PbO
2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl
2/HClO/ClO
−). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO
2–Sb and Ti/Pt–IrO
2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L
−1) was measured for the Ti/SnO
2–Sb electrode, after 0.55 Ah L
−1 of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products.
► Five different anodes were evaluated for the electrochemical oxidation of ROC. ► Ti/Pt–IrO
2 and Ti/SnO
2–Sb outperformed the other electrodes tested in our study. ► The highest formation of THMs and HAAs was observed for Ti/Pt–IrO
2 and Ti/SnO
2–Sb. ► Indirect oxidation by chlorine was a dominant oxidation mechanism for all anodes.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2011.06.039</identifier><identifier>PMID: 21802107</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anode material ; Anodes ; Applied sciences ; Byproducts ; Chlorine ; Electrochemical oxidation ; Electrochemistry ; Electrodes ; Exact sciences and technology ; haloacetic acids ; municipal wastewater ; Organic pollutants ; Osmosis ; oxidants ; oxidation ; Oxidation by-products ; Oxidation-Reduction ; Oxides - chemistry ; Platinum ; Pollution ; Reverse osmosis ; Reverse osmosis concentrates ; streams ; Titanium ; Titanium - chemistry ; Waste water ; water flow ; water reuse ; water treatment ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2011-10, Vol.45 (16), p.4951-4959</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-4ff0d5a9454e9b9ebab842d960c9cc6ba4a7b9c570c1aef7699915ae4b3770303</citedby><cites>FETCH-LOGICAL-c480t-4ff0d5a9454e9b9ebab842d960c9cc6ba4a7b9c570c1aef7699915ae4b3770303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135411003824$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24508717$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21802107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagastyo, Arseto Y.</creatorcontrib><creatorcontrib>Radjenovic, Jelena</creatorcontrib><creatorcontrib>Mu, Yang</creatorcontrib><creatorcontrib>Rozendal, René A.</creatorcontrib><creatorcontrib>Batstone, Damien J.</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><title>Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15–25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO
2–Ta
2O
5, RuO
2–IrO
2, Pt–IrO
2, PbO
2, and SnO
2–Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt–IrO
2 anodes, followed by the Ti/SnO
2–Sb and Ti/PbO
2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl
2/HClO/ClO
−). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO
2–Sb and Ti/Pt–IrO
2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L
−1) was measured for the Ti/SnO
2–Sb electrode, after 0.55 Ah L
−1 of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products.
► Five different anodes were evaluated for the electrochemical oxidation of ROC. ► Ti/Pt–IrO
2 and Ti/SnO
2–Sb outperformed the other electrodes tested in our study. ► The highest formation of THMs and HAAs was observed for Ti/Pt–IrO
2 and Ti/SnO
2–Sb. ► Indirect oxidation by chlorine was a dominant oxidation mechanism for all anodes.</description><subject>Anode material</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Byproducts</subject><subject>Chlorine</subject><subject>Electrochemical oxidation</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>haloacetic acids</subject><subject>municipal wastewater</subject><subject>Organic pollutants</subject><subject>Osmosis</subject><subject>oxidants</subject><subject>oxidation</subject><subject>Oxidation by-products</subject><subject>Oxidation-Reduction</subject><subject>Oxides - chemistry</subject><subject>Platinum</subject><subject>Pollution</subject><subject>Reverse osmosis</subject><subject>Reverse osmosis concentrates</subject><subject>streams</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Waste water</subject><subject>water flow</subject><subject>water reuse</subject><subject>water treatment</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k1v1DAQgGELgehS-AcIfEGUQ8I48Ud8QUJVW5Ba9QA9W44zAa-SuNjeUv49XmWBWzlFsp7JWHlDyEsGNQMm32_rnzZHTHUDjNUga2j1I7JhndJVw3n3mGwAeFuxVvAj8iylLQA0TaufkqOGddAwUBuynE3ocgzuO87e2YmGez_Y7MNCw0gj3mFMSEOaQ_KJurA4XHK0uZwtdPb3ONAZ82EO6cnV1fU7mn22i9_NxRc5UFx3DJiekyejnRK-ODyPyc352dfTT9Xl9cXn04-XleMd5IqPIwzCai446l5jb_uON4OW4LRzsrfcql47ocAxi6OSWmsmLPK-VQpaaI_J2_W9tzH82GHKZvbJ4TTZBcMuma74Vpav8X_ZKSW04KrIkwclU0oxkI3WhfKVuhhSijia2-hnG38ZBmZfz2zNWs_s6xmQptQrY68OG3b9jMPfoT-5CnhzADaVWGO0i_Ppn-MCOsX27vXqRhuM_RaLuflSNonyCzDQci8-rAJLhTuP0STnsdQdfCyxzBD8w3f9Db0exCc</recordid><startdate>20111015</startdate><enddate>20111015</enddate><creator>Bagastyo, Arseto Y.</creator><creator>Radjenovic, Jelena</creator><creator>Mu, Yang</creator><creator>Rozendal, René A.</creator><creator>Batstone, Damien J.</creator><creator>Rabaey, Korneel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20111015</creationdate><title>Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes</title><author>Bagastyo, Arseto Y. ; Radjenovic, Jelena ; Mu, Yang ; Rozendal, René A. ; Batstone, Damien J. ; Rabaey, Korneel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-4ff0d5a9454e9b9ebab842d960c9cc6ba4a7b9c570c1aef7699915ae4b3770303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anode material</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Byproducts</topic><topic>Chlorine</topic><topic>Electrochemical oxidation</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>haloacetic acids</topic><topic>municipal wastewater</topic><topic>Organic pollutants</topic><topic>Osmosis</topic><topic>oxidants</topic><topic>oxidation</topic><topic>Oxidation by-products</topic><topic>Oxidation-Reduction</topic><topic>Oxides - chemistry</topic><topic>Platinum</topic><topic>Pollution</topic><topic>Reverse osmosis</topic><topic>Reverse osmosis concentrates</topic><topic>streams</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Waste water</topic><topic>water flow</topic><topic>water reuse</topic><topic>water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagastyo, Arseto Y.</creatorcontrib><creatorcontrib>Radjenovic, Jelena</creatorcontrib><creatorcontrib>Mu, Yang</creatorcontrib><creatorcontrib>Rozendal, René A.</creatorcontrib><creatorcontrib>Batstone, Damien J.</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagastyo, Arseto Y.</au><au>Radjenovic, Jelena</au><au>Mu, Yang</au><au>Rozendal, René A.</au><au>Batstone, Damien J.</au><au>Rabaey, Korneel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2011-10-15</date><risdate>2011</risdate><volume>45</volume><issue>16</issue><spage>4951</spage><epage>4959</epage><pages>4951-4959</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15–25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO
2–Ta
2O
5, RuO
2–IrO
2, Pt–IrO
2, PbO
2, and SnO
2–Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt–IrO
2 anodes, followed by the Ti/SnO
2–Sb and Ti/PbO
2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl
2/HClO/ClO
−). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO
2–Sb and Ti/Pt–IrO
2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L
−1) was measured for the Ti/SnO
2–Sb electrode, after 0.55 Ah L
−1 of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products.
► Five different anodes were evaluated for the electrochemical oxidation of ROC. ► Ti/Pt–IrO
2 and Ti/SnO
2–Sb outperformed the other electrodes tested in our study. ► The highest formation of THMs and HAAs was observed for Ti/Pt–IrO
2 and Ti/SnO
2–Sb. ► Indirect oxidation by chlorine was a dominant oxidation mechanism for all anodes.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21802107</pmid><doi>10.1016/j.watres.2011.06.039</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2011-10, Vol.45 (16), p.4951-4959 |
issn | 0043-1354 1879-2448 |
language | eng |
recordid | cdi_proquest_miscellaneous_899136223 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Anode material Anodes Applied sciences Byproducts Chlorine Electrochemical oxidation Electrochemistry Electrodes Exact sciences and technology haloacetic acids municipal wastewater Organic pollutants Osmosis oxidants oxidation Oxidation by-products Oxidation-Reduction Oxides - chemistry Platinum Pollution Reverse osmosis Reverse osmosis concentrates streams Titanium Titanium - chemistry Waste water water flow water reuse water treatment Water treatment and pollution |
title | Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20oxidation%20of%20reverse%20osmosis%20concentrate%20on%20mixed%20metal%20oxide%20(MMO)%20titanium%20coated%20electrodes&rft.jtitle=Water%20research%20(Oxford)&rft.au=Bagastyo,%20Arseto%20Y.&rft.date=2011-10-15&rft.volume=45&rft.issue=16&rft.spage=4951&rft.epage=4959&rft.pages=4951-4959&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2011.06.039&rft_dat=%3Cproquest_cross%3E1777106299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777106299&rft_id=info:pmid/21802107&rft_els_id=S0043135411003824&rfr_iscdi=true |