Testing the evolution process of prostate-specific antigen in early stage prostate cancer: what is the proper underlying model?

This paper empirically tests a model of stochastic evolutions of prostate‐specific antigen (PSA), a trigger for intervention in an early stage prostate cancer surveillance program. It conducts hypothesis testing of the Geometric Browning Motion model based on its attributes of independent increments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2011-11, Vol.30 (25), p.3038-3049
Hauptverfasser: Prisman, Eliezer Z., Gafni, Amiram, Finelli, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3049
container_issue 25
container_start_page 3038
container_title Statistics in medicine
container_volume 30
creator Prisman, Eliezer Z.
Gafni, Amiram
Finelli, Antonio
description This paper empirically tests a model of stochastic evolutions of prostate‐specific antigen (PSA), a trigger for intervention in an early stage prostate cancer surveillance program. It conducts hypothesis testing of the Geometric Browning Motion model based on its attributes of independent increments and linearity of the variance in the increment length versus a wide range of stochastic and deterministic alternatives. These alternatives include the currently accepted deterministic growth model. The paper reports strong empirical evidence in favour of the Geometric Browning Motion model. A model that best describes PSA evolution is a prerequisite to the establishment of decision‐making criteria for abandoning active surveillance (i.e. a strategy that involves close monitoring) in early stage prostate cancer. Thus, establishing empirically the type of PSA process is a first step toward the identification of more accurate triggers for abandoning active surveillance and starting treatment while the chances of curing the disease are still high. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.4329
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_899131378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>899131378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3589-2edeca5312ae1520ee5656885db1e9723b9a357f0418c71e82d5df14397353ca3</originalsourceid><addsrcrecordid>eNp1kM1OGzEUha2Kqgm0Ek-AvKObAf_EY5sNQikkqZJ0UapK3ViO507idn7CeAbIilfHaUJ2rGzpfv58z0HolJILSgi7DL68GHCmP6A-JVomhAl1hPqESZmkkooeOg7hLyGUCiY_oR6jiqWpVn30cg-h9dUStyvA8FgXXevrCq-b2kEIuM6319DaFpKwBudz77CtWr-ECvsKg22KDY7zJRxA7GzloLnCTyvbYh_-q-NwDQ3uqgzii-2HZZ1Bcf0ZfcxtEeDL_jxBv-5u74fjZPpjNBneTBPHhdIJgwycFZwyCzEDARCpSJUS2YKClowvtOVC5mRAlZMUFMtEltMB15IL7iw_Qec7b1zkoYuZTemDg6KwFdRdMEpryimXKpJfd6SLeUIDuVk3vrTNxlBitm2b2LbZth3Rs720W5SQHcC3eiOQ7IAnX8DmXZH5OZnthXvehxaeD7xt_plUcinM7_nIDOffR7PZ-Jv5w18BYwmaIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899131378</pqid></control><display><type>article</type><title>Testing the evolution process of prostate-specific antigen in early stage prostate cancer: what is the proper underlying model?</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Prisman, Eliezer Z. ; Gafni, Amiram ; Finelli, Antonio</creator><creatorcontrib>Prisman, Eliezer Z. ; Gafni, Amiram ; Finelli, Antonio</creatorcontrib><description>This paper empirically tests a model of stochastic evolutions of prostate‐specific antigen (PSA), a trigger for intervention in an early stage prostate cancer surveillance program. It conducts hypothesis testing of the Geometric Browning Motion model based on its attributes of independent increments and linearity of the variance in the increment length versus a wide range of stochastic and deterministic alternatives. These alternatives include the currently accepted deterministic growth model. The paper reports strong empirical evidence in favour of the Geometric Browning Motion model. A model that best describes PSA evolution is a prerequisite to the establishment of decision‐making criteria for abandoning active surveillance (i.e. a strategy that involves close monitoring) in early stage prostate cancer. Thus, establishing empirically the type of PSA process is a first step toward the identification of more accurate triggers for abandoning active surveillance and starting treatment while the chances of curing the disease are still high. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.4329</identifier><identifier>PMID: 21826698</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>active surveillance ; Data Interpretation, Statistical ; Databases, Factual - statistics &amp; numerical data ; Decision Making ; Early Detection of Cancer - statistics &amp; numerical data ; Geometric Brownian Motion ; Humans ; Male ; Models, Biological ; Models, Statistical ; Ontario - epidemiology ; prostate cancer ; Prostate-Specific Antigen - metabolism ; Prostatic Neoplasms - diagnosis ; Prostatic Neoplasms - epidemiology ; stochastic evolution of PSA</subject><ispartof>Statistics in medicine, 2011-11, Vol.30 (25), p.3038-3049</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3589-2edeca5312ae1520ee5656885db1e9723b9a357f0418c71e82d5df14397353ca3</citedby><cites>FETCH-LOGICAL-c3589-2edeca5312ae1520ee5656885db1e9723b9a357f0418c71e82d5df14397353ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.4329$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.4329$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21826698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prisman, Eliezer Z.</creatorcontrib><creatorcontrib>Gafni, Amiram</creatorcontrib><creatorcontrib>Finelli, Antonio</creatorcontrib><title>Testing the evolution process of prostate-specific antigen in early stage prostate cancer: what is the proper underlying model?</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>This paper empirically tests a model of stochastic evolutions of prostate‐specific antigen (PSA), a trigger for intervention in an early stage prostate cancer surveillance program. It conducts hypothesis testing of the Geometric Browning Motion model based on its attributes of independent increments and linearity of the variance in the increment length versus a wide range of stochastic and deterministic alternatives. These alternatives include the currently accepted deterministic growth model. The paper reports strong empirical evidence in favour of the Geometric Browning Motion model. A model that best describes PSA evolution is a prerequisite to the establishment of decision‐making criteria for abandoning active surveillance (i.e. a strategy that involves close monitoring) in early stage prostate cancer. Thus, establishing empirically the type of PSA process is a first step toward the identification of more accurate triggers for abandoning active surveillance and starting treatment while the chances of curing the disease are still high. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>active surveillance</subject><subject>Data Interpretation, Statistical</subject><subject>Databases, Factual - statistics &amp; numerical data</subject><subject>Decision Making</subject><subject>Early Detection of Cancer - statistics &amp; numerical data</subject><subject>Geometric Brownian Motion</subject><subject>Humans</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Ontario - epidemiology</subject><subject>prostate cancer</subject><subject>Prostate-Specific Antigen - metabolism</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Prostatic Neoplasms - epidemiology</subject><subject>stochastic evolution of PSA</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1OGzEUha2Kqgm0Ek-AvKObAf_EY5sNQikkqZJ0UapK3ViO507idn7CeAbIilfHaUJ2rGzpfv58z0HolJILSgi7DL68GHCmP6A-JVomhAl1hPqESZmkkooeOg7hLyGUCiY_oR6jiqWpVn30cg-h9dUStyvA8FgXXevrCq-b2kEIuM6319DaFpKwBudz77CtWr-ECvsKg22KDY7zJRxA7GzloLnCTyvbYh_-q-NwDQ3uqgzii-2HZZ1Bcf0ZfcxtEeDL_jxBv-5u74fjZPpjNBneTBPHhdIJgwycFZwyCzEDARCpSJUS2YKClowvtOVC5mRAlZMUFMtEltMB15IL7iw_Qec7b1zkoYuZTemDg6KwFdRdMEpryimXKpJfd6SLeUIDuVk3vrTNxlBitm2b2LbZth3Rs720W5SQHcC3eiOQ7IAnX8DmXZH5OZnthXvehxaeD7xt_plUcinM7_nIDOffR7PZ-Jv5w18BYwmaIg</recordid><startdate>20111110</startdate><enddate>20111110</enddate><creator>Prisman, Eliezer Z.</creator><creator>Gafni, Amiram</creator><creator>Finelli, Antonio</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111110</creationdate><title>Testing the evolution process of prostate-specific antigen in early stage prostate cancer: what is the proper underlying model?</title><author>Prisman, Eliezer Z. ; Gafni, Amiram ; Finelli, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3589-2edeca5312ae1520ee5656885db1e9723b9a357f0418c71e82d5df14397353ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>active surveillance</topic><topic>Data Interpretation, Statistical</topic><topic>Databases, Factual - statistics &amp; numerical data</topic><topic>Decision Making</topic><topic>Early Detection of Cancer - statistics &amp; numerical data</topic><topic>Geometric Brownian Motion</topic><topic>Humans</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Ontario - epidemiology</topic><topic>prostate cancer</topic><topic>Prostate-Specific Antigen - metabolism</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Prostatic Neoplasms - epidemiology</topic><topic>stochastic evolution of PSA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prisman, Eliezer Z.</creatorcontrib><creatorcontrib>Gafni, Amiram</creatorcontrib><creatorcontrib>Finelli, Antonio</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prisman, Eliezer Z.</au><au>Gafni, Amiram</au><au>Finelli, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the evolution process of prostate-specific antigen in early stage prostate cancer: what is the proper underlying model?</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2011-11-10</date><risdate>2011</risdate><volume>30</volume><issue>25</issue><spage>3038</spage><epage>3049</epage><pages>3038-3049</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>This paper empirically tests a model of stochastic evolutions of prostate‐specific antigen (PSA), a trigger for intervention in an early stage prostate cancer surveillance program. It conducts hypothesis testing of the Geometric Browning Motion model based on its attributes of independent increments and linearity of the variance in the increment length versus a wide range of stochastic and deterministic alternatives. These alternatives include the currently accepted deterministic growth model. The paper reports strong empirical evidence in favour of the Geometric Browning Motion model. A model that best describes PSA evolution is a prerequisite to the establishment of decision‐making criteria for abandoning active surveillance (i.e. a strategy that involves close monitoring) in early stage prostate cancer. Thus, establishing empirically the type of PSA process is a first step toward the identification of more accurate triggers for abandoning active surveillance and starting treatment while the chances of curing the disease are still high. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>21826698</pmid><doi>10.1002/sim.4329</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2011-11, Vol.30 (25), p.3038-3049
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_899131378
source MEDLINE; Wiley Online Library All Journals
subjects active surveillance
Data Interpretation, Statistical
Databases, Factual - statistics & numerical data
Decision Making
Early Detection of Cancer - statistics & numerical data
Geometric Brownian Motion
Humans
Male
Models, Biological
Models, Statistical
Ontario - epidemiology
prostate cancer
Prostate-Specific Antigen - metabolism
Prostatic Neoplasms - diagnosis
Prostatic Neoplasms - epidemiology
stochastic evolution of PSA
title Testing the evolution process of prostate-specific antigen in early stage prostate cancer: what is the proper underlying model?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20evolution%20process%20of%20prostate-specific%20antigen%20in%20early%20stage%20prostate%20cancer:%20what%20is%20the%20proper%20underlying%20model?&rft.jtitle=Statistics%20in%20medicine&rft.au=Prisman,%20Eliezer%20Z.&rft.date=2011-11-10&rft.volume=30&rft.issue=25&rft.spage=3038&rft.epage=3049&rft.pages=3038-3049&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.4329&rft_dat=%3Cproquest_cross%3E899131378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=899131378&rft_id=info:pmid/21826698&rfr_iscdi=true