Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond
Quantum hybrids Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum couplin...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2011-10, Vol.478 (7368), p.221-224 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 7368 |
container_start_page | 221 |
container_title | Nature (London) |
container_volume | 478 |
creator | Zhu, Xiaobo Saito, Shiro Kemp, Alexander Kakuyanagi, Kosuke Karimoto, Shin-ichi Nakano, Hayato Munro, William J. Tokura, Yasuhiro Everitt, Mark S. Nemoto, Kae Kasu, Makoto Mizuochi, Norikazu Semba, Kouichi |
description | Quantum hybrids
Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum coupling could be achieved. Zhu
et al
. improve the prospects of such technology, demonstrating coherent strong coupling and exchange of a quantum of energy between a superconducting flux qubit and an ensemble of electron spins associated with nitrogen-vacancy defects in diamond.
During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress
1
. Many foundational experiments have been performed
2
,
3
,
4
,
5
,
6
,
7
,
8
, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention
9
,
10
,
11
,
12
since the first demonstration of macroscopic quantum coherence in Josephson junction circuits
2
. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10
7
such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems. |
doi_str_mv | 10.1038/nature10462 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_898505792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>898505792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-88fa129500e832c702e1e7fadc481c300753290ddc909803bbd0fc99e84f281b3</originalsourceid><addsrcrecordid>eNpt0M9rFTEQB_AgSvusnrxLEEoPdnWSzW6SY3lULRS8tAdPSzY7qVt2k22yAfvfN-U9W5Ge8uuTmeFLyAcGXxjU6qs3a47IQLT8FdkwIdtKtEq-JhsAripQdXtI3qZ0CwANk-KAHHKmdS0buSG_tuE3RvQrtSEv0-hvaHDU0JQXjDb4Idv18dJN-Q-9y_240jVQ4ylOaNcYPE3LWE4-4dxPSMt-GM1cPr4jb5yZEr7fr0fk-tv51fZHdfnz-8X27LKyQqi1UsoZxnUDgKrmVgJHhtKZwQrFbA0gm5prGAarQSuo-34AZ7VGJRxXrK-PyMmu7hLDXca0dvOYLE6T8Rhy6pRWDTRS8yI__SdvQ46-DNdpYLoFaJuCPu-QjSGliK5b4jibeN8x6B7z7v7Ju-iP-5K5n3F4sn8DLuB4D0yyZnLReDumZydKV5CsuNOdS-XJ32B8nu2lvg_n5ZfN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901960065</pqid></control><display><type>article</type><title>Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Zhu, Xiaobo ; Saito, Shiro ; Kemp, Alexander ; Kakuyanagi, Kosuke ; Karimoto, Shin-ichi ; Nakano, Hayato ; Munro, William J. ; Tokura, Yasuhiro ; Everitt, Mark S. ; Nemoto, Kae ; Kasu, Makoto ; Mizuochi, Norikazu ; Semba, Kouichi</creator><creatorcontrib>Zhu, Xiaobo ; Saito, Shiro ; Kemp, Alexander ; Kakuyanagi, Kosuke ; Karimoto, Shin-ichi ; Nakano, Hayato ; Munro, William J. ; Tokura, Yasuhiro ; Everitt, Mark S. ; Nemoto, Kae ; Kasu, Makoto ; Mizuochi, Norikazu ; Semba, Kouichi</creatorcontrib><description>Quantum hybrids
Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum coupling could be achieved. Zhu
et al
. improve the prospects of such technology, demonstrating coherent strong coupling and exchange of a quantum of energy between a superconducting flux qubit and an ensemble of electron spins associated with nitrogen-vacancy defects in diamond.
During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress
1
. Many foundational experiments have been performed
2
,
3
,
4
,
5
,
6
,
7
,
8
, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention
9
,
10
,
11
,
12
since the first demonstration of macroscopic quantum coherence in Josephson junction circuits
2
. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10
7
such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature10462</identifier><identifier>PMID: 21993757</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/483/481 ; Atoms & subatomic particles ; Classical and quantum physics: mechanics and fields ; Crystals ; Exact sciences and technology ; Fluctuations ; Humanities and Social Sciences ; letter ; Magnetic fields ; multidisciplinary ; Physics ; Quantum dots ; Quantum information ; Quantum theory ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2011-10, Vol.478 (7368), p.221-224</ispartof><rights>Springer Nature Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Oct 13, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-88fa129500e832c702e1e7fadc481c300753290ddc909803bbd0fc99e84f281b3</citedby><cites>FETCH-LOGICAL-c448t-88fa129500e832c702e1e7fadc481c300753290ddc909803bbd0fc99e84f281b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature10462$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature10462$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24600071$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21993757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiaobo</creatorcontrib><creatorcontrib>Saito, Shiro</creatorcontrib><creatorcontrib>Kemp, Alexander</creatorcontrib><creatorcontrib>Kakuyanagi, Kosuke</creatorcontrib><creatorcontrib>Karimoto, Shin-ichi</creatorcontrib><creatorcontrib>Nakano, Hayato</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Tokura, Yasuhiro</creatorcontrib><creatorcontrib>Everitt, Mark S.</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Kasu, Makoto</creatorcontrib><creatorcontrib>Mizuochi, Norikazu</creatorcontrib><creatorcontrib>Semba, Kouichi</creatorcontrib><title>Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Quantum hybrids
Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum coupling could be achieved. Zhu
et al
. improve the prospects of such technology, demonstrating coherent strong coupling and exchange of a quantum of energy between a superconducting flux qubit and an ensemble of electron spins associated with nitrogen-vacancy defects in diamond.
During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress
1
. Many foundational experiments have been performed
2
,
3
,
4
,
5
,
6
,
7
,
8
, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention
9
,
10
,
11
,
12
since the first demonstration of macroscopic quantum coherence in Josephson junction circuits
2
. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10
7
such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.</description><subject>639/766/119/1003</subject><subject>639/766/483/481</subject><subject>Atoms & subatomic particles</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Crystals</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Quantum information</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0M9rFTEQB_AgSvusnrxLEEoPdnWSzW6SY3lULRS8tAdPSzY7qVt2k22yAfvfN-U9W5Ge8uuTmeFLyAcGXxjU6qs3a47IQLT8FdkwIdtKtEq-JhsAripQdXtI3qZ0CwANk-KAHHKmdS0buSG_tuE3RvQrtSEv0-hvaHDU0JQXjDb4Idv18dJN-Q-9y_240jVQ4ylOaNcYPE3LWE4-4dxPSMt-GM1cPr4jb5yZEr7fr0fk-tv51fZHdfnz-8X27LKyQqi1UsoZxnUDgKrmVgJHhtKZwQrFbA0gm5prGAarQSuo-34AZ7VGJRxXrK-PyMmu7hLDXca0dvOYLE6T8Rhy6pRWDTRS8yI__SdvQ46-DNdpYLoFaJuCPu-QjSGliK5b4jibeN8x6B7z7v7Ju-iP-5K5n3F4sn8DLuB4D0yyZnLReDumZydKV5CsuNOdS-XJ32B8nu2lvg_n5ZfN</recordid><startdate>20111013</startdate><enddate>20111013</enddate><creator>Zhu, Xiaobo</creator><creator>Saito, Shiro</creator><creator>Kemp, Alexander</creator><creator>Kakuyanagi, Kosuke</creator><creator>Karimoto, Shin-ichi</creator><creator>Nakano, Hayato</creator><creator>Munro, William J.</creator><creator>Tokura, Yasuhiro</creator><creator>Everitt, Mark S.</creator><creator>Nemoto, Kae</creator><creator>Kasu, Makoto</creator><creator>Mizuochi, Norikazu</creator><creator>Semba, Kouichi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20111013</creationdate><title>Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond</title><author>Zhu, Xiaobo ; Saito, Shiro ; Kemp, Alexander ; Kakuyanagi, Kosuke ; Karimoto, Shin-ichi ; Nakano, Hayato ; Munro, William J. ; Tokura, Yasuhiro ; Everitt, Mark S. ; Nemoto, Kae ; Kasu, Makoto ; Mizuochi, Norikazu ; Semba, Kouichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-88fa129500e832c702e1e7fadc481c300753290ddc909803bbd0fc99e84f281b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/766/119/1003</topic><topic>639/766/483/481</topic><topic>Atoms & subatomic particles</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Crystals</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Quantum information</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaobo</creatorcontrib><creatorcontrib>Saito, Shiro</creatorcontrib><creatorcontrib>Kemp, Alexander</creatorcontrib><creatorcontrib>Kakuyanagi, Kosuke</creatorcontrib><creatorcontrib>Karimoto, Shin-ichi</creatorcontrib><creatorcontrib>Nakano, Hayato</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Tokura, Yasuhiro</creatorcontrib><creatorcontrib>Everitt, Mark S.</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Kasu, Makoto</creatorcontrib><creatorcontrib>Mizuochi, Norikazu</creatorcontrib><creatorcontrib>Semba, Kouichi</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaobo</au><au>Saito, Shiro</au><au>Kemp, Alexander</au><au>Kakuyanagi, Kosuke</au><au>Karimoto, Shin-ichi</au><au>Nakano, Hayato</au><au>Munro, William J.</au><au>Tokura, Yasuhiro</au><au>Everitt, Mark S.</au><au>Nemoto, Kae</au><au>Kasu, Makoto</au><au>Mizuochi, Norikazu</au><au>Semba, Kouichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2011-10-13</date><risdate>2011</risdate><volume>478</volume><issue>7368</issue><spage>221</spage><epage>224</epage><pages>221-224</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Quantum hybrids
Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum coupling could be achieved. Zhu
et al
. improve the prospects of such technology, demonstrating coherent strong coupling and exchange of a quantum of energy between a superconducting flux qubit and an ensemble of electron spins associated with nitrogen-vacancy defects in diamond.
During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress
1
. Many foundational experiments have been performed
2
,
3
,
4
,
5
,
6
,
7
,
8
, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention
9
,
10
,
11
,
12
since the first demonstration of macroscopic quantum coherence in Josephson junction circuits
2
. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10
7
such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21993757</pmid><doi>10.1038/nature10462</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2011-10, Vol.478 (7368), p.221-224 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_898505792 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/766/119/1003 639/766/483/481 Atoms & subatomic particles Classical and quantum physics: mechanics and fields Crystals Exact sciences and technology Fluctuations Humanities and Social Sciences letter Magnetic fields multidisciplinary Physics Quantum dots Quantum information Quantum theory Science Science (multidisciplinary) |
title | Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20coupling%20of%20a%20superconducting%20flux%20qubit%20to%20an%20electron%20spin%20ensemble%20in%20diamond&rft.jtitle=Nature%20(London)&rft.au=Zhu,%20Xiaobo&rft.date=2011-10-13&rft.volume=478&rft.issue=7368&rft.spage=221&rft.epage=224&rft.pages=221-224&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature10462&rft_dat=%3Cproquest_cross%3E898505792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901960065&rft_id=info:pmid/21993757&rfr_iscdi=true |