Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond

Quantum hybrids Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum couplin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2011-10, Vol.478 (7368), p.221-224
Hauptverfasser: Zhu, Xiaobo, Saito, Shiro, Kemp, Alexander, Kakuyanagi, Kosuke, Karimoto, Shin-ichi, Nakano, Hayato, Munro, William J., Tokura, Yasuhiro, Everitt, Mark S., Nemoto, Kae, Kasu, Makoto, Mizuochi, Norikazu, Semba, Kouichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 7368
container_start_page 221
container_title Nature (London)
container_volume 478
creator Zhu, Xiaobo
Saito, Shiro
Kemp, Alexander
Kakuyanagi, Kosuke
Karimoto, Shin-ichi
Nakano, Hayato
Munro, William J.
Tokura, Yasuhiro
Everitt, Mark S.
Nemoto, Kae
Kasu, Makoto
Mizuochi, Norikazu
Semba, Kouichi
description Quantum hybrids Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum coupling could be achieved. Zhu et al . improve the prospects of such technology, demonstrating coherent strong coupling and exchange of a quantum of energy between a superconducting flux qubit and an ensemble of electron spins associated with nitrogen-vacancy defects in diamond. During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress 1 . Many foundational experiments have been performed 2 , 3 , 4 , 5 , 6 , 7 , 8 , and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention 9 , 10 , 11 , 12 since the first demonstration of macroscopic quantum coherence in Josephson junction circuits 2 . Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10 7 such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.
doi_str_mv 10.1038/nature10462
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_898505792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>898505792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-88fa129500e832c702e1e7fadc481c300753290ddc909803bbd0fc99e84f281b3</originalsourceid><addsrcrecordid>eNpt0M9rFTEQB_AgSvusnrxLEEoPdnWSzW6SY3lULRS8tAdPSzY7qVt2k22yAfvfN-U9W5Ge8uuTmeFLyAcGXxjU6qs3a47IQLT8FdkwIdtKtEq-JhsAripQdXtI3qZ0CwANk-KAHHKmdS0buSG_tuE3RvQrtSEv0-hvaHDU0JQXjDb4Idv18dJN-Q-9y_240jVQ4ylOaNcYPE3LWE4-4dxPSMt-GM1cPr4jb5yZEr7fr0fk-tv51fZHdfnz-8X27LKyQqi1UsoZxnUDgKrmVgJHhtKZwQrFbA0gm5prGAarQSuo-34AZ7VGJRxXrK-PyMmu7hLDXca0dvOYLE6T8Rhy6pRWDTRS8yI__SdvQ46-DNdpYLoFaJuCPu-QjSGliK5b4jibeN8x6B7z7v7Ju-iP-5K5n3F4sn8DLuB4D0yyZnLReDumZydKV5CsuNOdS-XJ32B8nu2lvg_n5ZfN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901960065</pqid></control><display><type>article</type><title>Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Zhu, Xiaobo ; Saito, Shiro ; Kemp, Alexander ; Kakuyanagi, Kosuke ; Karimoto, Shin-ichi ; Nakano, Hayato ; Munro, William J. ; Tokura, Yasuhiro ; Everitt, Mark S. ; Nemoto, Kae ; Kasu, Makoto ; Mizuochi, Norikazu ; Semba, Kouichi</creator><creatorcontrib>Zhu, Xiaobo ; Saito, Shiro ; Kemp, Alexander ; Kakuyanagi, Kosuke ; Karimoto, Shin-ichi ; Nakano, Hayato ; Munro, William J. ; Tokura, Yasuhiro ; Everitt, Mark S. ; Nemoto, Kae ; Kasu, Makoto ; Mizuochi, Norikazu ; Semba, Kouichi</creatorcontrib><description>Quantum hybrids Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum coupling could be achieved. Zhu et al . improve the prospects of such technology, demonstrating coherent strong coupling and exchange of a quantum of energy between a superconducting flux qubit and an ensemble of electron spins associated with nitrogen-vacancy defects in diamond. During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress 1 . Many foundational experiments have been performed 2 , 3 , 4 , 5 , 6 , 7 , 8 , and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention 9 , 10 , 11 , 12 since the first demonstration of macroscopic quantum coherence in Josephson junction circuits 2 . Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10 7 such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature10462</identifier><identifier>PMID: 21993757</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/483/481 ; Atoms &amp; subatomic particles ; Classical and quantum physics: mechanics and fields ; Crystals ; Exact sciences and technology ; Fluctuations ; Humanities and Social Sciences ; letter ; Magnetic fields ; multidisciplinary ; Physics ; Quantum dots ; Quantum information ; Quantum theory ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2011-10, Vol.478 (7368), p.221-224</ispartof><rights>Springer Nature Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Oct 13, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-88fa129500e832c702e1e7fadc481c300753290ddc909803bbd0fc99e84f281b3</citedby><cites>FETCH-LOGICAL-c448t-88fa129500e832c702e1e7fadc481c300753290ddc909803bbd0fc99e84f281b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature10462$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature10462$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24600071$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21993757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiaobo</creatorcontrib><creatorcontrib>Saito, Shiro</creatorcontrib><creatorcontrib>Kemp, Alexander</creatorcontrib><creatorcontrib>Kakuyanagi, Kosuke</creatorcontrib><creatorcontrib>Karimoto, Shin-ichi</creatorcontrib><creatorcontrib>Nakano, Hayato</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Tokura, Yasuhiro</creatorcontrib><creatorcontrib>Everitt, Mark S.</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Kasu, Makoto</creatorcontrib><creatorcontrib>Mizuochi, Norikazu</creatorcontrib><creatorcontrib>Semba, Kouichi</creatorcontrib><title>Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Quantum hybrids Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum coupling could be achieved. Zhu et al . improve the prospects of such technology, demonstrating coherent strong coupling and exchange of a quantum of energy between a superconducting flux qubit and an ensemble of electron spins associated with nitrogen-vacancy defects in diamond. During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress 1 . Many foundational experiments have been performed 2 , 3 , 4 , 5 , 6 , 7 , 8 , and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention 9 , 10 , 11 , 12 since the first demonstration of macroscopic quantum coherence in Josephson junction circuits 2 . Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10 7 such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.</description><subject>639/766/119/1003</subject><subject>639/766/483/481</subject><subject>Atoms &amp; subatomic particles</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Crystals</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Quantum information</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0M9rFTEQB_AgSvusnrxLEEoPdnWSzW6SY3lULRS8tAdPSzY7qVt2k22yAfvfN-U9W5Ge8uuTmeFLyAcGXxjU6qs3a47IQLT8FdkwIdtKtEq-JhsAripQdXtI3qZ0CwANk-KAHHKmdS0buSG_tuE3RvQrtSEv0-hvaHDU0JQXjDb4Idv18dJN-Q-9y_240jVQ4ylOaNcYPE3LWE4-4dxPSMt-GM1cPr4jb5yZEr7fr0fk-tv51fZHdfnz-8X27LKyQqi1UsoZxnUDgKrmVgJHhtKZwQrFbA0gm5prGAarQSuo-34AZ7VGJRxXrK-PyMmu7hLDXca0dvOYLE6T8Rhy6pRWDTRS8yI__SdvQ46-DNdpYLoFaJuCPu-QjSGliK5b4jibeN8x6B7z7v7Ju-iP-5K5n3F4sn8DLuB4D0yyZnLReDumZydKV5CsuNOdS-XJ32B8nu2lvg_n5ZfN</recordid><startdate>20111013</startdate><enddate>20111013</enddate><creator>Zhu, Xiaobo</creator><creator>Saito, Shiro</creator><creator>Kemp, Alexander</creator><creator>Kakuyanagi, Kosuke</creator><creator>Karimoto, Shin-ichi</creator><creator>Nakano, Hayato</creator><creator>Munro, William J.</creator><creator>Tokura, Yasuhiro</creator><creator>Everitt, Mark S.</creator><creator>Nemoto, Kae</creator><creator>Kasu, Makoto</creator><creator>Mizuochi, Norikazu</creator><creator>Semba, Kouichi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20111013</creationdate><title>Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond</title><author>Zhu, Xiaobo ; Saito, Shiro ; Kemp, Alexander ; Kakuyanagi, Kosuke ; Karimoto, Shin-ichi ; Nakano, Hayato ; Munro, William J. ; Tokura, Yasuhiro ; Everitt, Mark S. ; Nemoto, Kae ; Kasu, Makoto ; Mizuochi, Norikazu ; Semba, Kouichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-88fa129500e832c702e1e7fadc481c300753290ddc909803bbd0fc99e84f281b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/766/119/1003</topic><topic>639/766/483/481</topic><topic>Atoms &amp; subatomic particles</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Crystals</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Quantum information</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaobo</creatorcontrib><creatorcontrib>Saito, Shiro</creatorcontrib><creatorcontrib>Kemp, Alexander</creatorcontrib><creatorcontrib>Kakuyanagi, Kosuke</creatorcontrib><creatorcontrib>Karimoto, Shin-ichi</creatorcontrib><creatorcontrib>Nakano, Hayato</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Tokura, Yasuhiro</creatorcontrib><creatorcontrib>Everitt, Mark S.</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Kasu, Makoto</creatorcontrib><creatorcontrib>Mizuochi, Norikazu</creatorcontrib><creatorcontrib>Semba, Kouichi</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaobo</au><au>Saito, Shiro</au><au>Kemp, Alexander</au><au>Kakuyanagi, Kosuke</au><au>Karimoto, Shin-ichi</au><au>Nakano, Hayato</au><au>Munro, William J.</au><au>Tokura, Yasuhiro</au><au>Everitt, Mark S.</au><au>Nemoto, Kae</au><au>Kasu, Makoto</au><au>Mizuochi, Norikazu</au><au>Semba, Kouichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2011-10-13</date><risdate>2011</risdate><volume>478</volume><issue>7368</issue><spage>221</spage><epage>224</epage><pages>221-224</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Quantum hybrids Hybrid quantum devices, in which a superconducting qubit is coupled to a dedicated quantum memory based on natural atomic or molecular ensembles, are promising for quantum information processing. However, it has not been clear whether the required strength of coherent quantum coupling could be achieved. Zhu et al . improve the prospects of such technology, demonstrating coherent strong coupling and exchange of a quantum of energy between a superconducting flux qubit and an ensemble of electron spins associated with nitrogen-vacancy defects in diamond. During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress 1 . Many foundational experiments have been performed 2 , 3 , 4 , 5 , 6 , 7 , 8 , and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention 9 , 10 , 11 , 12 since the first demonstration of macroscopic quantum coherence in Josephson junction circuits 2 . Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10 7 such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21993757</pmid><doi>10.1038/nature10462</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2011-10, Vol.478 (7368), p.221-224
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_898505792
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/766/119/1003
639/766/483/481
Atoms & subatomic particles
Classical and quantum physics: mechanics and fields
Crystals
Exact sciences and technology
Fluctuations
Humanities and Social Sciences
letter
Magnetic fields
multidisciplinary
Physics
Quantum dots
Quantum information
Quantum theory
Science
Science (multidisciplinary)
title Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20coupling%20of%20a%20superconducting%20flux%20qubit%20to%20an%20electron%20spin%20ensemble%20in%20diamond&rft.jtitle=Nature%20(London)&rft.au=Zhu,%20Xiaobo&rft.date=2011-10-13&rft.volume=478&rft.issue=7368&rft.spage=221&rft.epage=224&rft.pages=221-224&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature10462&rft_dat=%3Cproquest_cross%3E898505792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901960065&rft_id=info:pmid/21993757&rfr_iscdi=true