Rat liver uncoupling protein 2: Changes induced by a fructose-rich diet
To evaluate the role of uncoupling protein 2 (UCP2) and peroxisome proliferator-activated receptors (PPARs) in the response of liver to glycoxidative stress triggered by administration of a fructose-rich diet (FRD). We assessed blood glucose in the fasting state and after a glucose load (glucose-oxi...
Gespeichert in:
Veröffentlicht in: | Life sciences (1973) 2011-10, Vol.89 (17-18), p.609-614 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 17-18 |
container_start_page | 609 |
container_title | Life sciences (1973) |
container_volume | 89 |
creator | Castro, María C. Massa, María L. Del Zotto, Héctor Gagliardino, Juan J. Francini, Flavio |
description | To evaluate the role of uncoupling protein 2 (UCP2) and peroxisome proliferator-activated receptors (PPARs) in the response of liver to glycoxidative stress triggered by administration of a fructose-rich diet (FRD).
We assessed blood glucose in the fasting state and after a glucose load (glucose-oxidase method), serum triglyceride (enzymatic measurement), insulin (radioimmunoassay), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (colorimetric kits) in control and FRD animals. In liver, we measured UCP2, PPARα, PPARδ and PPARγ gene (real-time PCR) and protein (Western blot) expression, fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) gene expression, as well as triglyceride content.
Blood glucose, serum insulin and triglyceride levels, homeostasis model assessment of insulin resistance (HOMA-IR) indexes and impaired glucose tolerance were higher in FRD rats. Whereas UCP2 and PPARδ gene and protein expression increased in these animals; PPARγ levels were lower and those of PPARα remained unchanged. FRD also increased the mRNA expression of PPARδ target genes FAS and GPAT.
Our results suggest that a) the increased UCP2 gene and protein expression measured in FRD rats could be part of a compensatory mechanism to reduce reactive oxygen species production induced by the fructose overload, and b) PPARs expression participates actively in the regulation of UCP2 expression, and under the metabolic condition tested, PPARδ played a key role. This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced glycoxidative stress, and to develop appropriate prevention strategies in obesity and type 2 diabetes. |
doi_str_mv | 10.1016/j.lfs.2011.07.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896833322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024320511003705</els_id><sourcerecordid>896833322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-8140cd18e2854ff604cd2c2f8c9bd1249be696ac568125a124a40b319456f5bf3</originalsourceid><addsrcrecordid>eNp9kFFL5DAQx4Mouqd-gHs58-ZT6yRp0lSfZFFPEATvfA5pOlmzdNs1aQW_vZH1fLyBYWD4zZ_hR8hPBiUDpi7WZe9TyYGxEuoSeLVHFkzXTQFKsH2ygLwqBAd5RH6ktAYAKWtxSI440zKXWJC7JzvRPrxhpPPgxnnbh2FFt3GcMAyUX9Llix1WmGgYutlhR9t3aqmPs5vGhEUM7oV2AacTcuBtn_D0ax6T59ubv8vfxcPj3f3y-qFwolZToVkFrmMauZaV9woq13HHvXZN2zFeNS2qRlknlWZc2ryxFbSCNZVUXrZeHJPzXW5-8XXGNJlNSA773g44zsnoRmkhBOeZZDvSxTGliN5sY9jY-G4YmE99Zm2yPvOpz0Btsqt88-srfW432H1f_POVgbMd4O1o7CqGZJ7_5AQJuVkDTSaudgRmC28Bo0ku4JDVhYhuMt0Y_vPAB6jfh84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896833322</pqid></control><display><type>article</type><title>Rat liver uncoupling protein 2: Changes induced by a fructose-rich diet</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Castro, María C. ; Massa, María L. ; Del Zotto, Héctor ; Gagliardino, Juan J. ; Francini, Flavio</creator><creatorcontrib>Castro, María C. ; Massa, María L. ; Del Zotto, Héctor ; Gagliardino, Juan J. ; Francini, Flavio</creatorcontrib><description>To evaluate the role of uncoupling protein 2 (UCP2) and peroxisome proliferator-activated receptors (PPARs) in the response of liver to glycoxidative stress triggered by administration of a fructose-rich diet (FRD).
We assessed blood glucose in the fasting state and after a glucose load (glucose-oxidase method), serum triglyceride (enzymatic measurement), insulin (radioimmunoassay), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (colorimetric kits) in control and FRD animals. In liver, we measured UCP2, PPARα, PPARδ and PPARγ gene (real-time PCR) and protein (Western blot) expression, fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) gene expression, as well as triglyceride content.
Blood glucose, serum insulin and triglyceride levels, homeostasis model assessment of insulin resistance (HOMA-IR) indexes and impaired glucose tolerance were higher in FRD rats. Whereas UCP2 and PPARδ gene and protein expression increased in these animals; PPARγ levels were lower and those of PPARα remained unchanged. FRD also increased the mRNA expression of PPARδ target genes FAS and GPAT.
Our results suggest that a) the increased UCP2 gene and protein expression measured in FRD rats could be part of a compensatory mechanism to reduce reactive oxygen species production induced by the fructose overload, and b) PPARs expression participates actively in the regulation of UCP2 expression, and under the metabolic condition tested, PPARδ played a key role. This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced glycoxidative stress, and to develop appropriate prevention strategies in obesity and type 2 diabetes.</description><identifier>ISSN: 0024-3205</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2011.07.024</identifier><identifier>PMID: 21855553</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>alanine transaminase ; Animals ; aspartate transaminase ; blood glucose ; Blood Glucose - metabolism ; blood serum ; colorimetry ; Diet ; fasting ; fatty-acid synthase ; fructose ; Fructose - metabolism ; Fructose-rich diet ; gene expression ; Gene Expression Regulation ; genes ; glucose ; glucose oxidase ; glucose tolerance ; glycerol-3-phosphate acyltransferase ; Glycoxidative stress ; homeostasis ; insulin ; Insulin - blood ; Insulin Resistance ; Ion Channels - genetics ; Ion Channels - metabolism ; liver ; Liver - metabolism ; Liver uncoupling protein 2 ; Male ; messenger RNA ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; noninsulin-dependent diabetes mellitus ; obesity ; Peroxisome Proliferator-Activated Receptors - genetics ; Peroxisome Proliferator-Activated Receptors - metabolism ; Peroxisome proliferator-activated receptors regulation ; protein synthesis ; quantitative polymerase chain reaction ; radioimmunoassays ; Rats ; Rats, Wistar ; reactive oxygen species ; receptors ; triacylglycerols ; Triglycerides - blood ; Uncoupling Protein 2 ; Western blotting</subject><ispartof>Life sciences (1973), 2011-10, Vol.89 (17-18), p.609-614</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-8140cd18e2854ff604cd2c2f8c9bd1249be696ac568125a124a40b319456f5bf3</citedby><cites>FETCH-LOGICAL-c376t-8140cd18e2854ff604cd2c2f8c9bd1249be696ac568125a124a40b319456f5bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.lfs.2011.07.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21855553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro, María C.</creatorcontrib><creatorcontrib>Massa, María L.</creatorcontrib><creatorcontrib>Del Zotto, Héctor</creatorcontrib><creatorcontrib>Gagliardino, Juan J.</creatorcontrib><creatorcontrib>Francini, Flavio</creatorcontrib><title>Rat liver uncoupling protein 2: Changes induced by a fructose-rich diet</title><title>Life sciences (1973)</title><addtitle>Life Sci</addtitle><description>To evaluate the role of uncoupling protein 2 (UCP2) and peroxisome proliferator-activated receptors (PPARs) in the response of liver to glycoxidative stress triggered by administration of a fructose-rich diet (FRD).
We assessed blood glucose in the fasting state and after a glucose load (glucose-oxidase method), serum triglyceride (enzymatic measurement), insulin (radioimmunoassay), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (colorimetric kits) in control and FRD animals. In liver, we measured UCP2, PPARα, PPARδ and PPARγ gene (real-time PCR) and protein (Western blot) expression, fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) gene expression, as well as triglyceride content.
Blood glucose, serum insulin and triglyceride levels, homeostasis model assessment of insulin resistance (HOMA-IR) indexes and impaired glucose tolerance were higher in FRD rats. Whereas UCP2 and PPARδ gene and protein expression increased in these animals; PPARγ levels were lower and those of PPARα remained unchanged. FRD also increased the mRNA expression of PPARδ target genes FAS and GPAT.
Our results suggest that a) the increased UCP2 gene and protein expression measured in FRD rats could be part of a compensatory mechanism to reduce reactive oxygen species production induced by the fructose overload, and b) PPARs expression participates actively in the regulation of UCP2 expression, and under the metabolic condition tested, PPARδ played a key role. This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced glycoxidative stress, and to develop appropriate prevention strategies in obesity and type 2 diabetes.</description><subject>alanine transaminase</subject><subject>Animals</subject><subject>aspartate transaminase</subject><subject>blood glucose</subject><subject>Blood Glucose - metabolism</subject><subject>blood serum</subject><subject>colorimetry</subject><subject>Diet</subject><subject>fasting</subject><subject>fatty-acid synthase</subject><subject>fructose</subject><subject>Fructose - metabolism</subject><subject>Fructose-rich diet</subject><subject>gene expression</subject><subject>Gene Expression Regulation</subject><subject>genes</subject><subject>glucose</subject><subject>glucose oxidase</subject><subject>glucose tolerance</subject><subject>glycerol-3-phosphate acyltransferase</subject><subject>Glycoxidative stress</subject><subject>homeostasis</subject><subject>insulin</subject><subject>Insulin - blood</subject><subject>Insulin Resistance</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>liver</subject><subject>Liver - metabolism</subject><subject>Liver uncoupling protein 2</subject><subject>Male</subject><subject>messenger RNA</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>noninsulin-dependent diabetes mellitus</subject><subject>obesity</subject><subject>Peroxisome Proliferator-Activated Receptors - genetics</subject><subject>Peroxisome Proliferator-Activated Receptors - metabolism</subject><subject>Peroxisome proliferator-activated receptors regulation</subject><subject>protein synthesis</subject><subject>quantitative polymerase chain reaction</subject><subject>radioimmunoassays</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>reactive oxygen species</subject><subject>receptors</subject><subject>triacylglycerols</subject><subject>Triglycerides - blood</subject><subject>Uncoupling Protein 2</subject><subject>Western blotting</subject><issn>0024-3205</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFFL5DAQx4Mouqd-gHs58-ZT6yRp0lSfZFFPEATvfA5pOlmzdNs1aQW_vZH1fLyBYWD4zZ_hR8hPBiUDpi7WZe9TyYGxEuoSeLVHFkzXTQFKsH2ygLwqBAd5RH6ktAYAKWtxSI440zKXWJC7JzvRPrxhpPPgxnnbh2FFt3GcMAyUX9Llix1WmGgYutlhR9t3aqmPs5vGhEUM7oV2AacTcuBtn_D0ax6T59ubv8vfxcPj3f3y-qFwolZToVkFrmMauZaV9woq13HHvXZN2zFeNS2qRlknlWZc2ryxFbSCNZVUXrZeHJPzXW5-8XXGNJlNSA773g44zsnoRmkhBOeZZDvSxTGliN5sY9jY-G4YmE99Zm2yPvOpz0Btsqt88-srfW432H1f_POVgbMd4O1o7CqGZJ7_5AQJuVkDTSaudgRmC28Bo0ku4JDVhYhuMt0Y_vPAB6jfh84</recordid><startdate>20111024</startdate><enddate>20111024</enddate><creator>Castro, María C.</creator><creator>Massa, María L.</creator><creator>Del Zotto, Héctor</creator><creator>Gagliardino, Juan J.</creator><creator>Francini, Flavio</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111024</creationdate><title>Rat liver uncoupling protein 2: Changes induced by a fructose-rich diet</title><author>Castro, María C. ; Massa, María L. ; Del Zotto, Héctor ; Gagliardino, Juan J. ; Francini, Flavio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-8140cd18e2854ff604cd2c2f8c9bd1249be696ac568125a124a40b319456f5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>alanine transaminase</topic><topic>Animals</topic><topic>aspartate transaminase</topic><topic>blood glucose</topic><topic>Blood Glucose - metabolism</topic><topic>blood serum</topic><topic>colorimetry</topic><topic>Diet</topic><topic>fasting</topic><topic>fatty-acid synthase</topic><topic>fructose</topic><topic>Fructose - metabolism</topic><topic>Fructose-rich diet</topic><topic>gene expression</topic><topic>Gene Expression Regulation</topic><topic>genes</topic><topic>glucose</topic><topic>glucose oxidase</topic><topic>glucose tolerance</topic><topic>glycerol-3-phosphate acyltransferase</topic><topic>Glycoxidative stress</topic><topic>homeostasis</topic><topic>insulin</topic><topic>Insulin - blood</topic><topic>Insulin Resistance</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>liver</topic><topic>Liver - metabolism</topic><topic>Liver uncoupling protein 2</topic><topic>Male</topic><topic>messenger RNA</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>noninsulin-dependent diabetes mellitus</topic><topic>obesity</topic><topic>Peroxisome Proliferator-Activated Receptors - genetics</topic><topic>Peroxisome Proliferator-Activated Receptors - metabolism</topic><topic>Peroxisome proliferator-activated receptors regulation</topic><topic>protein synthesis</topic><topic>quantitative polymerase chain reaction</topic><topic>radioimmunoassays</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>reactive oxygen species</topic><topic>receptors</topic><topic>triacylglycerols</topic><topic>Triglycerides - blood</topic><topic>Uncoupling Protein 2</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, María C.</creatorcontrib><creatorcontrib>Massa, María L.</creatorcontrib><creatorcontrib>Del Zotto, Héctor</creatorcontrib><creatorcontrib>Gagliardino, Juan J.</creatorcontrib><creatorcontrib>Francini, Flavio</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, María C.</au><au>Massa, María L.</au><au>Del Zotto, Héctor</au><au>Gagliardino, Juan J.</au><au>Francini, Flavio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rat liver uncoupling protein 2: Changes induced by a fructose-rich diet</atitle><jtitle>Life sciences (1973)</jtitle><addtitle>Life Sci</addtitle><date>2011-10-24</date><risdate>2011</risdate><volume>89</volume><issue>17-18</issue><spage>609</spage><epage>614</epage><pages>609-614</pages><issn>0024-3205</issn><eissn>1879-0631</eissn><abstract>To evaluate the role of uncoupling protein 2 (UCP2) and peroxisome proliferator-activated receptors (PPARs) in the response of liver to glycoxidative stress triggered by administration of a fructose-rich diet (FRD).
We assessed blood glucose in the fasting state and after a glucose load (glucose-oxidase method), serum triglyceride (enzymatic measurement), insulin (radioimmunoassay), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (colorimetric kits) in control and FRD animals. In liver, we measured UCP2, PPARα, PPARδ and PPARγ gene (real-time PCR) and protein (Western blot) expression, fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) gene expression, as well as triglyceride content.
Blood glucose, serum insulin and triglyceride levels, homeostasis model assessment of insulin resistance (HOMA-IR) indexes and impaired glucose tolerance were higher in FRD rats. Whereas UCP2 and PPARδ gene and protein expression increased in these animals; PPARγ levels were lower and those of PPARα remained unchanged. FRD also increased the mRNA expression of PPARδ target genes FAS and GPAT.
Our results suggest that a) the increased UCP2 gene and protein expression measured in FRD rats could be part of a compensatory mechanism to reduce reactive oxygen species production induced by the fructose overload, and b) PPARs expression participates actively in the regulation of UCP2 expression, and under the metabolic condition tested, PPARδ played a key role. This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced glycoxidative stress, and to develop appropriate prevention strategies in obesity and type 2 diabetes.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>21855553</pmid><doi>10.1016/j.lfs.2011.07.024</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3205 |
ispartof | Life sciences (1973), 2011-10, Vol.89 (17-18), p.609-614 |
issn | 0024-3205 1879-0631 |
language | eng |
recordid | cdi_proquest_miscellaneous_896833322 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | alanine transaminase Animals aspartate transaminase blood glucose Blood Glucose - metabolism blood serum colorimetry Diet fasting fatty-acid synthase fructose Fructose - metabolism Fructose-rich diet gene expression Gene Expression Regulation genes glucose glucose oxidase glucose tolerance glycerol-3-phosphate acyltransferase Glycoxidative stress homeostasis insulin Insulin - blood Insulin Resistance Ion Channels - genetics Ion Channels - metabolism liver Liver - metabolism Liver uncoupling protein 2 Male messenger RNA Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism noninsulin-dependent diabetes mellitus obesity Peroxisome Proliferator-Activated Receptors - genetics Peroxisome Proliferator-Activated Receptors - metabolism Peroxisome proliferator-activated receptors regulation protein synthesis quantitative polymerase chain reaction radioimmunoassays Rats Rats, Wistar reactive oxygen species receptors triacylglycerols Triglycerides - blood Uncoupling Protein 2 Western blotting |
title | Rat liver uncoupling protein 2: Changes induced by a fructose-rich diet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rat%20liver%20uncoupling%20protein%202:%20Changes%20induced%20by%20a%20fructose-rich%20diet&rft.jtitle=Life%20sciences%20(1973)&rft.au=Castro,%20Mar%C3%ADa%20C.&rft.date=2011-10-24&rft.volume=89&rft.issue=17-18&rft.spage=609&rft.epage=614&rft.pages=609-614&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2011.07.024&rft_dat=%3Cproquest_cross%3E896833322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896833322&rft_id=info:pmid/21855553&rft_els_id=S0024320511003705&rfr_iscdi=true |