A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer

We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2009-12, Vol.611 (2), p.326-330
Hauptverfasser: Kreuz, M., Nesvizhevsky, V.V., Schmidt-Wellenburg, P., Soldner, T., Thomas, M., Börner, H.G., Naraghi, F., Pignol, G., Protasov, K.V., Rebreyend, D., Vezzu, F., Flaminio, R., Michel, C., Morgado, N., Pinard, L., Baeßler, S., Gagarski, A.M., Grigorieva, L.A., Kuzmina, T.M., Meyerovich, A.E., Mezhov-Deglin, L.P., Petrov, G.A., Strelkov, A.V., Voronin, A.Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue 2
container_start_page 326
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 611
creator Kreuz, M.
Nesvizhevsky, V.V.
Schmidt-Wellenburg, P.
Soldner, T.
Thomas, M.
Börner, H.G.
Naraghi, F.
Pignol, G.
Protasov, K.V.
Rebreyend, D.
Vezzu, F.
Flaminio, R.
Michel, C.
Morgado, N.
Pinard, L.
Baeßler, S.
Gagarski, A.M.
Grigorieva, L.A.
Kuzmina, T.M.
Meyerovich, A.E.
Mezhov-Deglin, L.P.
Petrov, G.A.
Strelkov, A.V.
Voronin, A.Yu
description We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of ultracold neutrons at specular trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.
doi_str_mv 10.1016/j.nima.2009.07.059
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_896247767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900209015551</els_id><sourcerecordid>896247767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-249c782566c3ae0e45ea80c9f093dd4b229c0bcc5af0fa941d66a3e6319b34653</originalsourceid><addsrcrecordid>eNp9kcFu3CAQhq2qlbpN8wI5ceuhsjvGGIzUyypqk0irVqrSM8J43GXlhQ3grfIAee_gusoxXGCY7x_E_xfFVQ1VDTX_cqicPeqKAsgKRAWtfFNs6k7QUraCvy02GepKCUDfFx9iPEBeUnSb4mlLjpj2fiDJ55OOc0CS9kgCRu-0M7kK2kWbrHeR9Jj-Irp_xJ-gzzbppaGn6ZH0fnYDeZi1S_ORxNzBSPxIHM4pLGK76m5-bX_c3ZN4QpPv8-sYPhbvRj1FvPy_XxS_v3-7v74tdz9v7q63u9Iw0aWSMmlER1vOTaMRkLWoOzByBNkMA-splQZ6Y1o9wqglqwfOdYO8qWXfMN42F8Xnde5eT-oUsmXhUXlt1e12p6yjp0YBsBoaBuc6059W-hT8w4wxqaONBqdJO_RzVJ3klAnBRSbpSprgYww4vgyvQS0BqYNaAlJLQAqEygFl0ddVhPnHZ4tBRWMxOz7YkK1Rg7evyZ8Be7ebhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896247767</pqid></control><display><type>article</type><title>A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer</title><source>Elsevier ScienceDirect Journals</source><creator>Kreuz, M. ; Nesvizhevsky, V.V. ; Schmidt-Wellenburg, P. ; Soldner, T. ; Thomas, M. ; Börner, H.G. ; Naraghi, F. ; Pignol, G. ; Protasov, K.V. ; Rebreyend, D. ; Vezzu, F. ; Flaminio, R. ; Michel, C. ; Morgado, N. ; Pinard, L. ; Baeßler, S. ; Gagarski, A.M. ; Grigorieva, L.A. ; Kuzmina, T.M. ; Meyerovich, A.E. ; Mezhov-Deglin, L.P. ; Petrov, G.A. ; Strelkov, A.V. ; Voronin, A.Yu</creator><creatorcontrib>Kreuz, M. ; Nesvizhevsky, V.V. ; Schmidt-Wellenburg, P. ; Soldner, T. ; Thomas, M. ; Börner, H.G. ; Naraghi, F. ; Pignol, G. ; Protasov, K.V. ; Rebreyend, D. ; Vezzu, F. ; Flaminio, R. ; Michel, C. ; Morgado, N. ; Pinard, L. ; Baeßler, S. ; Gagarski, A.M. ; Grigorieva, L.A. ; Kuzmina, T.M. ; Meyerovich, A.E. ; Mezhov-Deglin, L.P. ; Petrov, G.A. ; Strelkov, A.V. ; Voronin, A.Yu</creatorcontrib><description>We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of ultracold neutrons at specular trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2009.07.059</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerators ; Detectors ; Fundamental particle physics ; Gravity ; Instrumentation and Detectors ; Magnetic fields ; Magnetic resonance ; Mathematical models ; Physics ; Quantum mechanics ; Searching ; Spectrometers ; Trajectories ; Ultracold neutrons</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2009-12, Vol.611 (2), p.326-330</ispartof><rights>2009 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-249c782566c3ae0e45ea80c9f093dd4b229c0bcc5af0fa941d66a3e6319b34653</citedby><cites>FETCH-LOGICAL-c478t-249c782566c3ae0e45ea80c9f093dd4b229c0bcc5af0fa941d66a3e6319b34653</cites><orcidid>0000-0003-2786-1516 ; 0000-0002-0240-0599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900209015551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-00410340$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreuz, M.</creatorcontrib><creatorcontrib>Nesvizhevsky, V.V.</creatorcontrib><creatorcontrib>Schmidt-Wellenburg, P.</creatorcontrib><creatorcontrib>Soldner, T.</creatorcontrib><creatorcontrib>Thomas, M.</creatorcontrib><creatorcontrib>Börner, H.G.</creatorcontrib><creatorcontrib>Naraghi, F.</creatorcontrib><creatorcontrib>Pignol, G.</creatorcontrib><creatorcontrib>Protasov, K.V.</creatorcontrib><creatorcontrib>Rebreyend, D.</creatorcontrib><creatorcontrib>Vezzu, F.</creatorcontrib><creatorcontrib>Flaminio, R.</creatorcontrib><creatorcontrib>Michel, C.</creatorcontrib><creatorcontrib>Morgado, N.</creatorcontrib><creatorcontrib>Pinard, L.</creatorcontrib><creatorcontrib>Baeßler, S.</creatorcontrib><creatorcontrib>Gagarski, A.M.</creatorcontrib><creatorcontrib>Grigorieva, L.A.</creatorcontrib><creatorcontrib>Kuzmina, T.M.</creatorcontrib><creatorcontrib>Meyerovich, A.E.</creatorcontrib><creatorcontrib>Mezhov-Deglin, L.P.</creatorcontrib><creatorcontrib>Petrov, G.A.</creatorcontrib><creatorcontrib>Strelkov, A.V.</creatorcontrib><creatorcontrib>Voronin, A.Yu</creatorcontrib><title>A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of ultracold neutrons at specular trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.</description><subject>Accelerators</subject><subject>Detectors</subject><subject>Fundamental particle physics</subject><subject>Gravity</subject><subject>Instrumentation and Detectors</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Quantum mechanics</subject><subject>Searching</subject><subject>Spectrometers</subject><subject>Trajectories</subject><subject>Ultracold neutrons</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu3CAQhq2qlbpN8wI5ceuhsjvGGIzUyypqk0irVqrSM8J43GXlhQ3grfIAee_gusoxXGCY7x_E_xfFVQ1VDTX_cqicPeqKAsgKRAWtfFNs6k7QUraCvy02GepKCUDfFx9iPEBeUnSb4mlLjpj2fiDJ55OOc0CS9kgCRu-0M7kK2kWbrHeR9Jj-Irp_xJ-gzzbppaGn6ZH0fnYDeZi1S_ORxNzBSPxIHM4pLGK76m5-bX_c3ZN4QpPv8-sYPhbvRj1FvPy_XxS_v3-7v74tdz9v7q63u9Iw0aWSMmlER1vOTaMRkLWoOzByBNkMA-splQZ6Y1o9wqglqwfOdYO8qWXfMN42F8Xnde5eT-oUsmXhUXlt1e12p6yjp0YBsBoaBuc6059W-hT8w4wxqaONBqdJO_RzVJ3klAnBRSbpSprgYww4vgyvQS0BqYNaAlJLQAqEygFl0ddVhPnHZ4tBRWMxOz7YkK1Rg7evyZ8Be7ebhQ</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Kreuz, M.</creator><creator>Nesvizhevsky, V.V.</creator><creator>Schmidt-Wellenburg, P.</creator><creator>Soldner, T.</creator><creator>Thomas, M.</creator><creator>Börner, H.G.</creator><creator>Naraghi, F.</creator><creator>Pignol, G.</creator><creator>Protasov, K.V.</creator><creator>Rebreyend, D.</creator><creator>Vezzu, F.</creator><creator>Flaminio, R.</creator><creator>Michel, C.</creator><creator>Morgado, N.</creator><creator>Pinard, L.</creator><creator>Baeßler, S.</creator><creator>Gagarski, A.M.</creator><creator>Grigorieva, L.A.</creator><creator>Kuzmina, T.M.</creator><creator>Meyerovich, A.E.</creator><creator>Mezhov-Deglin, L.P.</creator><creator>Petrov, G.A.</creator><creator>Strelkov, A.V.</creator><creator>Voronin, A.Yu</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2786-1516</orcidid><orcidid>https://orcid.org/0000-0002-0240-0599</orcidid></search><sort><creationdate>20091201</creationdate><title>A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer</title><author>Kreuz, M. ; Nesvizhevsky, V.V. ; Schmidt-Wellenburg, P. ; Soldner, T. ; Thomas, M. ; Börner, H.G. ; Naraghi, F. ; Pignol, G. ; Protasov, K.V. ; Rebreyend, D. ; Vezzu, F. ; Flaminio, R. ; Michel, C. ; Morgado, N. ; Pinard, L. ; Baeßler, S. ; Gagarski, A.M. ; Grigorieva, L.A. ; Kuzmina, T.M. ; Meyerovich, A.E. ; Mezhov-Deglin, L.P. ; Petrov, G.A. ; Strelkov, A.V. ; Voronin, A.Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-249c782566c3ae0e45ea80c9f093dd4b229c0bcc5af0fa941d66a3e6319b34653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accelerators</topic><topic>Detectors</topic><topic>Fundamental particle physics</topic><topic>Gravity</topic><topic>Instrumentation and Detectors</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Quantum mechanics</topic><topic>Searching</topic><topic>Spectrometers</topic><topic>Trajectories</topic><topic>Ultracold neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreuz, M.</creatorcontrib><creatorcontrib>Nesvizhevsky, V.V.</creatorcontrib><creatorcontrib>Schmidt-Wellenburg, P.</creatorcontrib><creatorcontrib>Soldner, T.</creatorcontrib><creatorcontrib>Thomas, M.</creatorcontrib><creatorcontrib>Börner, H.G.</creatorcontrib><creatorcontrib>Naraghi, F.</creatorcontrib><creatorcontrib>Pignol, G.</creatorcontrib><creatorcontrib>Protasov, K.V.</creatorcontrib><creatorcontrib>Rebreyend, D.</creatorcontrib><creatorcontrib>Vezzu, F.</creatorcontrib><creatorcontrib>Flaminio, R.</creatorcontrib><creatorcontrib>Michel, C.</creatorcontrib><creatorcontrib>Morgado, N.</creatorcontrib><creatorcontrib>Pinard, L.</creatorcontrib><creatorcontrib>Baeßler, S.</creatorcontrib><creatorcontrib>Gagarski, A.M.</creatorcontrib><creatorcontrib>Grigorieva, L.A.</creatorcontrib><creatorcontrib>Kuzmina, T.M.</creatorcontrib><creatorcontrib>Meyerovich, A.E.</creatorcontrib><creatorcontrib>Mezhov-Deglin, L.P.</creatorcontrib><creatorcontrib>Petrov, G.A.</creatorcontrib><creatorcontrib>Strelkov, A.V.</creatorcontrib><creatorcontrib>Voronin, A.Yu</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreuz, M.</au><au>Nesvizhevsky, V.V.</au><au>Schmidt-Wellenburg, P.</au><au>Soldner, T.</au><au>Thomas, M.</au><au>Börner, H.G.</au><au>Naraghi, F.</au><au>Pignol, G.</au><au>Protasov, K.V.</au><au>Rebreyend, D.</au><au>Vezzu, F.</au><au>Flaminio, R.</au><au>Michel, C.</au><au>Morgado, N.</au><au>Pinard, L.</au><au>Baeßler, S.</au><au>Gagarski, A.M.</au><au>Grigorieva, L.A.</au><au>Kuzmina, T.M.</au><au>Meyerovich, A.E.</au><au>Mezhov-Deglin, L.P.</au><au>Petrov, G.A.</au><au>Strelkov, A.V.</au><au>Voronin, A.Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>611</volume><issue>2</issue><spage>326</spage><epage>330</epage><pages>326-330</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of ultracold neutrons at specular trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2009.07.059</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2786-1516</orcidid><orcidid>https://orcid.org/0000-0002-0240-0599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2009-12, Vol.611 (2), p.326-330
issn 0168-9002
1872-9576
language eng
recordid cdi_proquest_miscellaneous_896247767
source Elsevier ScienceDirect Journals
subjects Accelerators
Detectors
Fundamental particle physics
Gravity
Instrumentation and Detectors
Magnetic fields
Magnetic resonance
Mathematical models
Physics
Quantum mechanics
Searching
Spectrometers
Trajectories
Ultracold neutrons
title A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20to%20measure%20the%20resonance%20transitions%20between%20the%20gravitationally%20bound%20quantum%20states%20of%20neutrons%20in%20the%20GRANIT%20spectrometer&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Kreuz,%20M.&rft.date=2009-12-01&rft.volume=611&rft.issue=2&rft.spage=326&rft.epage=330&rft.pages=326-330&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2009.07.059&rft_dat=%3Cproquest_hal_p%3E896247767%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896247767&rft_id=info:pmid/&rft_els_id=S0168900209015551&rfr_iscdi=true