A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer
We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2009-12, Vol.611 (2), p.326-330 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 2 |
container_start_page | 326 |
container_title | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
container_volume | 611 |
creator | Kreuz, M. Nesvizhevsky, V.V. Schmidt-Wellenburg, P. Soldner, T. Thomas, M. Börner, H.G. Naraghi, F. Pignol, G. Protasov, K.V. Rebreyend, D. Vezzu, F. Flaminio, R. Michel, C. Morgado, N. Pinard, L. Baeßler, S. Gagarski, A.M. Grigorieva, L.A. Kuzmina, T.M. Meyerovich, A.E. Mezhov-Deglin, L.P. Petrov, G.A. Strelkov, A.V. Voronin, A.Yu |
description | We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of ultracold neutrons at specular trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena. |
doi_str_mv | 10.1016/j.nima.2009.07.059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_896247767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900209015551</els_id><sourcerecordid>896247767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-249c782566c3ae0e45ea80c9f093dd4b229c0bcc5af0fa941d66a3e6319b34653</originalsourceid><addsrcrecordid>eNp9kcFu3CAQhq2qlbpN8wI5ceuhsjvGGIzUyypqk0irVqrSM8J43GXlhQ3grfIAee_gusoxXGCY7x_E_xfFVQ1VDTX_cqicPeqKAsgKRAWtfFNs6k7QUraCvy02GepKCUDfFx9iPEBeUnSb4mlLjpj2fiDJ55OOc0CS9kgCRu-0M7kK2kWbrHeR9Jj-Irp_xJ-gzzbppaGn6ZH0fnYDeZi1S_ORxNzBSPxIHM4pLGK76m5-bX_c3ZN4QpPv8-sYPhbvRj1FvPy_XxS_v3-7v74tdz9v7q63u9Iw0aWSMmlER1vOTaMRkLWoOzByBNkMA-splQZ6Y1o9wqglqwfOdYO8qWXfMN42F8Xnde5eT-oUsmXhUXlt1e12p6yjp0YBsBoaBuc6059W-hT8w4wxqaONBqdJO_RzVJ3klAnBRSbpSprgYww4vgyvQS0BqYNaAlJLQAqEygFl0ddVhPnHZ4tBRWMxOz7YkK1Rg7evyZ8Be7ebhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896247767</pqid></control><display><type>article</type><title>A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer</title><source>Elsevier ScienceDirect Journals</source><creator>Kreuz, M. ; Nesvizhevsky, V.V. ; Schmidt-Wellenburg, P. ; Soldner, T. ; Thomas, M. ; Börner, H.G. ; Naraghi, F. ; Pignol, G. ; Protasov, K.V. ; Rebreyend, D. ; Vezzu, F. ; Flaminio, R. ; Michel, C. ; Morgado, N. ; Pinard, L. ; Baeßler, S. ; Gagarski, A.M. ; Grigorieva, L.A. ; Kuzmina, T.M. ; Meyerovich, A.E. ; Mezhov-Deglin, L.P. ; Petrov, G.A. ; Strelkov, A.V. ; Voronin, A.Yu</creator><creatorcontrib>Kreuz, M. ; Nesvizhevsky, V.V. ; Schmidt-Wellenburg, P. ; Soldner, T. ; Thomas, M. ; Börner, H.G. ; Naraghi, F. ; Pignol, G. ; Protasov, K.V. ; Rebreyend, D. ; Vezzu, F. ; Flaminio, R. ; Michel, C. ; Morgado, N. ; Pinard, L. ; Baeßler, S. ; Gagarski, A.M. ; Grigorieva, L.A. ; Kuzmina, T.M. ; Meyerovich, A.E. ; Mezhov-Deglin, L.P. ; Petrov, G.A. ; Strelkov, A.V. ; Voronin, A.Yu</creatorcontrib><description>We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of ultracold neutrons at specular trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2009.07.059</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerators ; Detectors ; Fundamental particle physics ; Gravity ; Instrumentation and Detectors ; Magnetic fields ; Magnetic resonance ; Mathematical models ; Physics ; Quantum mechanics ; Searching ; Spectrometers ; Trajectories ; Ultracold neutrons</subject><ispartof>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2009-12, Vol.611 (2), p.326-330</ispartof><rights>2009 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-249c782566c3ae0e45ea80c9f093dd4b229c0bcc5af0fa941d66a3e6319b34653</citedby><cites>FETCH-LOGICAL-c478t-249c782566c3ae0e45ea80c9f093dd4b229c0bcc5af0fa941d66a3e6319b34653</cites><orcidid>0000-0003-2786-1516 ; 0000-0002-0240-0599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900209015551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-00410340$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreuz, M.</creatorcontrib><creatorcontrib>Nesvizhevsky, V.V.</creatorcontrib><creatorcontrib>Schmidt-Wellenburg, P.</creatorcontrib><creatorcontrib>Soldner, T.</creatorcontrib><creatorcontrib>Thomas, M.</creatorcontrib><creatorcontrib>Börner, H.G.</creatorcontrib><creatorcontrib>Naraghi, F.</creatorcontrib><creatorcontrib>Pignol, G.</creatorcontrib><creatorcontrib>Protasov, K.V.</creatorcontrib><creatorcontrib>Rebreyend, D.</creatorcontrib><creatorcontrib>Vezzu, F.</creatorcontrib><creatorcontrib>Flaminio, R.</creatorcontrib><creatorcontrib>Michel, C.</creatorcontrib><creatorcontrib>Morgado, N.</creatorcontrib><creatorcontrib>Pinard, L.</creatorcontrib><creatorcontrib>Baeßler, S.</creatorcontrib><creatorcontrib>Gagarski, A.M.</creatorcontrib><creatorcontrib>Grigorieva, L.A.</creatorcontrib><creatorcontrib>Kuzmina, T.M.</creatorcontrib><creatorcontrib>Meyerovich, A.E.</creatorcontrib><creatorcontrib>Mezhov-Deglin, L.P.</creatorcontrib><creatorcontrib>Petrov, G.A.</creatorcontrib><creatorcontrib>Strelkov, A.V.</creatorcontrib><creatorcontrib>Voronin, A.Yu</creatorcontrib><title>A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer</title><title>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of ultracold neutrons at specular trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.</description><subject>Accelerators</subject><subject>Detectors</subject><subject>Fundamental particle physics</subject><subject>Gravity</subject><subject>Instrumentation and Detectors</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Quantum mechanics</subject><subject>Searching</subject><subject>Spectrometers</subject><subject>Trajectories</subject><subject>Ultracold neutrons</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu3CAQhq2qlbpN8wI5ceuhsjvGGIzUyypqk0irVqrSM8J43GXlhQ3grfIAee_gusoxXGCY7x_E_xfFVQ1VDTX_cqicPeqKAsgKRAWtfFNs6k7QUraCvy02GepKCUDfFx9iPEBeUnSb4mlLjpj2fiDJ55OOc0CS9kgCRu-0M7kK2kWbrHeR9Jj-Irp_xJ-gzzbppaGn6ZH0fnYDeZi1S_ORxNzBSPxIHM4pLGK76m5-bX_c3ZN4QpPv8-sYPhbvRj1FvPy_XxS_v3-7v74tdz9v7q63u9Iw0aWSMmlER1vOTaMRkLWoOzByBNkMA-splQZ6Y1o9wqglqwfOdYO8qWXfMN42F8Xnde5eT-oUsmXhUXlt1e12p6yjp0YBsBoaBuc6059W-hT8w4wxqaONBqdJO_RzVJ3klAnBRSbpSprgYww4vgyvQS0BqYNaAlJLQAqEygFl0ddVhPnHZ4tBRWMxOz7YkK1Rg7evyZ8Be7ebhQ</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Kreuz, M.</creator><creator>Nesvizhevsky, V.V.</creator><creator>Schmidt-Wellenburg, P.</creator><creator>Soldner, T.</creator><creator>Thomas, M.</creator><creator>Börner, H.G.</creator><creator>Naraghi, F.</creator><creator>Pignol, G.</creator><creator>Protasov, K.V.</creator><creator>Rebreyend, D.</creator><creator>Vezzu, F.</creator><creator>Flaminio, R.</creator><creator>Michel, C.</creator><creator>Morgado, N.</creator><creator>Pinard, L.</creator><creator>Baeßler, S.</creator><creator>Gagarski, A.M.</creator><creator>Grigorieva, L.A.</creator><creator>Kuzmina, T.M.</creator><creator>Meyerovich, A.E.</creator><creator>Mezhov-Deglin, L.P.</creator><creator>Petrov, G.A.</creator><creator>Strelkov, A.V.</creator><creator>Voronin, A.Yu</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2786-1516</orcidid><orcidid>https://orcid.org/0000-0002-0240-0599</orcidid></search><sort><creationdate>20091201</creationdate><title>A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer</title><author>Kreuz, M. ; Nesvizhevsky, V.V. ; Schmidt-Wellenburg, P. ; Soldner, T. ; Thomas, M. ; Börner, H.G. ; Naraghi, F. ; Pignol, G. ; Protasov, K.V. ; Rebreyend, D. ; Vezzu, F. ; Flaminio, R. ; Michel, C. ; Morgado, N. ; Pinard, L. ; Baeßler, S. ; Gagarski, A.M. ; Grigorieva, L.A. ; Kuzmina, T.M. ; Meyerovich, A.E. ; Mezhov-Deglin, L.P. ; Petrov, G.A. ; Strelkov, A.V. ; Voronin, A.Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-249c782566c3ae0e45ea80c9f093dd4b229c0bcc5af0fa941d66a3e6319b34653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accelerators</topic><topic>Detectors</topic><topic>Fundamental particle physics</topic><topic>Gravity</topic><topic>Instrumentation and Detectors</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Quantum mechanics</topic><topic>Searching</topic><topic>Spectrometers</topic><topic>Trajectories</topic><topic>Ultracold neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreuz, M.</creatorcontrib><creatorcontrib>Nesvizhevsky, V.V.</creatorcontrib><creatorcontrib>Schmidt-Wellenburg, P.</creatorcontrib><creatorcontrib>Soldner, T.</creatorcontrib><creatorcontrib>Thomas, M.</creatorcontrib><creatorcontrib>Börner, H.G.</creatorcontrib><creatorcontrib>Naraghi, F.</creatorcontrib><creatorcontrib>Pignol, G.</creatorcontrib><creatorcontrib>Protasov, K.V.</creatorcontrib><creatorcontrib>Rebreyend, D.</creatorcontrib><creatorcontrib>Vezzu, F.</creatorcontrib><creatorcontrib>Flaminio, R.</creatorcontrib><creatorcontrib>Michel, C.</creatorcontrib><creatorcontrib>Morgado, N.</creatorcontrib><creatorcontrib>Pinard, L.</creatorcontrib><creatorcontrib>Baeßler, S.</creatorcontrib><creatorcontrib>Gagarski, A.M.</creatorcontrib><creatorcontrib>Grigorieva, L.A.</creatorcontrib><creatorcontrib>Kuzmina, T.M.</creatorcontrib><creatorcontrib>Meyerovich, A.E.</creatorcontrib><creatorcontrib>Mezhov-Deglin, L.P.</creatorcontrib><creatorcontrib>Petrov, G.A.</creatorcontrib><creatorcontrib>Strelkov, A.V.</creatorcontrib><creatorcontrib>Voronin, A.Yu</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreuz, M.</au><au>Nesvizhevsky, V.V.</au><au>Schmidt-Wellenburg, P.</au><au>Soldner, T.</au><au>Thomas, M.</au><au>Börner, H.G.</au><au>Naraghi, F.</au><au>Pignol, G.</au><au>Protasov, K.V.</au><au>Rebreyend, D.</au><au>Vezzu, F.</au><au>Flaminio, R.</au><au>Michel, C.</au><au>Morgado, N.</au><au>Pinard, L.</au><au>Baeßler, S.</au><au>Gagarski, A.M.</au><au>Grigorieva, L.A.</au><au>Kuzmina, T.M.</au><au>Meyerovich, A.E.</au><au>Mezhov-Deglin, L.P.</au><au>Petrov, G.A.</au><au>Strelkov, A.V.</au><au>Voronin, A.Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer</atitle><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>611</volume><issue>2</issue><spage>326</spage><epage>330</epage><pages>326-330</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by several orders of magnitude, taking advantage of long storage of ultracold neutrons at specular trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2009.07.059</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2786-1516</orcidid><orcidid>https://orcid.org/0000-0002-0240-0599</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2009-12, Vol.611 (2), p.326-330 |
issn | 0168-9002 1872-9576 |
language | eng |
recordid | cdi_proquest_miscellaneous_896247767 |
source | Elsevier ScienceDirect Journals |
subjects | Accelerators Detectors Fundamental particle physics Gravity Instrumentation and Detectors Magnetic fields Magnetic resonance Mathematical models Physics Quantum mechanics Searching Spectrometers Trajectories Ultracold neutrons |
title | A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20to%20measure%20the%20resonance%20transitions%20between%20the%20gravitationally%20bound%20quantum%20states%20of%20neutrons%20in%20the%20GRANIT%20spectrometer&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Kreuz,%20M.&rft.date=2009-12-01&rft.volume=611&rft.issue=2&rft.spage=326&rft.epage=330&rft.pages=326-330&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2009.07.059&rft_dat=%3Cproquest_hal_p%3E896247767%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896247767&rft_id=info:pmid/&rft_els_id=S0168900209015551&rfr_iscdi=true |