Fast and accurate kernel density approximation using a divide-and-conquer approach
Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-con...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2010-09, Vol.11 (9), p.677-689 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 689 |
---|---|
container_issue | 9 |
container_start_page | 677 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 11 |
creator | Jin, Yan-xia Zhang, Kai Kwok, James T. Zhou, Han-chang |
description | Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-conquer method is proposed to reduce these computational requirements. The dataset is first partitioned into a number of small, compact clusters. Components of the kernel estimator in each local cluster are then fit to a single, representative density function. The key novelty presented here is the efficient derivation of the representative density function using concepts from function approximation, such that the expensive kernel density estimator can be easily summarized by a highly compact model with very few basis functions. The proposed method has a time complexity that is only linear in the sample size and data dimensionality. Moreover, the bandwidth of the resultant density model is adaptive to local data distribution. Experiments on color image filtering/segmentation show that, the proposed method is dramatically faster than both the standard mean shift and fast mean shift implementations based on kd-trees while producing competitive image segmentation results. |
doi_str_mv | 10.1631/jzus.C0910668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896246427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34985797</cqvip_id><sourcerecordid>2918722757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5232d83c58682a413051a2722cd0c2300403ff71e43c059bb085ef8c7573e8c13</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGqX7oMuXE3NY5JJllJ8QUEQBXchzWTatNNMm8yI9debMlVB8G5yF9855-YAcI7RGHOKr5efXRxPkMSIc3EEBlhwmWHJ345_doZPwSjGJUpDGZOcDsDznY4t1L6E2pgu6NbClQ3e1rC0Prp2B_VmE5oPt9atazzsovNzqGHp3l1psyTMTOO3nQ09qM3iDJxUuo52dHiH4PXu9mXykE2f7h8nN9PMUCzbjBFKSkENE1wQnWOKGNakIMSUyBCKUI5oVRXY5tQgJmczJJithClYQa0wmA7BVe-bYtMBsVVrF42ta-1t00UlJCc5z0mRyMs_5LLpgk_HKSKxSJl70yHIesqEJsZgK7UJ6dthpzBS-47VvmP13XHixz0fE-fnNvy6_ie4OAQsGj_fJo2aabOqXG0VzaVghSzoF1eViWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918722757</pqid></control><display><type>article</type><title>Fast and accurate kernel density approximation using a divide-and-conquer approach</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Jin, Yan-xia ; Zhang, Kai ; Kwok, James T. ; Zhou, Han-chang</creator><creatorcontrib>Jin, Yan-xia ; Zhang, Kai ; Kwok, James T. ; Zhou, Han-chang</creatorcontrib><description>Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-conquer method is proposed to reduce these computational requirements. The dataset is first partitioned into a number of small, compact clusters. Components of the kernel estimator in each local cluster are then fit to a single, representative density function. The key novelty presented here is the efficient derivation of the representative density function using concepts from function approximation, such that the expensive kernel density estimator can be easily summarized by a highly compact model with very few basis functions. The proposed method has a time complexity that is only linear in the sample size and data dimensionality. Moreover, the bandwidth of the resultant density model is adaptive to local data distribution. Experiments on color image filtering/segmentation show that, the proposed method is dramatically faster than both the standard mean shift and fast mean shift implementations based on kd-trees while producing competitive image segmentation results.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C0910668</identifier><language>eng</language><publisher>Heidelberg: SP Zhejiang University Press</publisher><subject>Algorithms ; Approximation ; Basis functions ; Clustering ; Clusters ; Color imagery ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Datasets ; Density ; Electrical Engineering ; Electronics and Microelectronics ; Estimators ; Image filters ; Image segmentation ; Instrumentation ; Kernels ; Mathematical analysis ; Mathematical models ; Networks</subject><ispartof>Frontiers of information technology & electronic engineering, 2010-09, Vol.11 (9), p.677-689</ispartof><rights>Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-5232d83c58682a413051a2722cd0c2300403ff71e43c059bb085ef8c7573e8c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.C0910668$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918722757?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21375,27911,27912,33731,41475,42544,43792,51306,64370,64374,72224</link.rule.ids></links><search><creatorcontrib>Jin, Yan-xia</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Kwok, James T.</creatorcontrib><creatorcontrib>Zhou, Han-chang</creatorcontrib><title>Fast and accurate kernel density approximation using a divide-and-conquer approach</title><title>Frontiers of information technology & electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-conquer method is proposed to reduce these computational requirements. The dataset is first partitioned into a number of small, compact clusters. Components of the kernel estimator in each local cluster are then fit to a single, representative density function. The key novelty presented here is the efficient derivation of the representative density function using concepts from function approximation, such that the expensive kernel density estimator can be easily summarized by a highly compact model with very few basis functions. The proposed method has a time complexity that is only linear in the sample size and data dimensionality. Moreover, the bandwidth of the resultant density model is adaptive to local data distribution. Experiments on color image filtering/segmentation show that, the proposed method is dramatically faster than both the standard mean shift and fast mean shift implementations based on kd-trees while producing competitive image segmentation results.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Color imagery</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Datasets</subject><subject>Density</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Estimators</subject><subject>Image filters</subject><subject>Image segmentation</subject><subject>Instrumentation</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Networks</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWGqX7oMuXE3NY5JJllJ8QUEQBXchzWTatNNMm8yI9debMlVB8G5yF9855-YAcI7RGHOKr5efXRxPkMSIc3EEBlhwmWHJ345_doZPwSjGJUpDGZOcDsDznY4t1L6E2pgu6NbClQ3e1rC0Prp2B_VmE5oPt9atazzsovNzqGHp3l1psyTMTOO3nQ09qM3iDJxUuo52dHiH4PXu9mXykE2f7h8nN9PMUCzbjBFKSkENE1wQnWOKGNakIMSUyBCKUI5oVRXY5tQgJmczJJithClYQa0wmA7BVe-bYtMBsVVrF42ta-1t00UlJCc5z0mRyMs_5LLpgk_HKSKxSJl70yHIesqEJsZgK7UJ6dthpzBS-47VvmP13XHixz0fE-fnNvy6_ie4OAQsGj_fJo2aabOqXG0VzaVghSzoF1eViWc</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Jin, Yan-xia</creator><creator>Zhang, Kai</creator><creator>Kwok, James T.</creator><creator>Zhou, Han-chang</creator><general>SP Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100901</creationdate><title>Fast and accurate kernel density approximation using a divide-and-conquer approach</title><author>Jin, Yan-xia ; Zhang, Kai ; Kwok, James T. ; Zhou, Han-chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5232d83c58682a413051a2722cd0c2300403ff71e43c059bb085ef8c7573e8c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Color imagery</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Datasets</topic><topic>Density</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Estimators</topic><topic>Image filters</topic><topic>Image segmentation</topic><topic>Instrumentation</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yan-xia</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Kwok, James T.</creatorcontrib><creatorcontrib>Zhou, Han-chang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yan-xia</au><au>Zhang, Kai</au><au>Kwok, James T.</au><au>Zhou, Han-chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and accurate kernel density approximation using a divide-and-conquer approach</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>11</volume><issue>9</issue><spage>677</spage><epage>689</epage><pages>677-689</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-conquer method is proposed to reduce these computational requirements. The dataset is first partitioned into a number of small, compact clusters. Components of the kernel estimator in each local cluster are then fit to a single, representative density function. The key novelty presented here is the efficient derivation of the representative density function using concepts from function approximation, such that the expensive kernel density estimator can be easily summarized by a highly compact model with very few basis functions. The proposed method has a time complexity that is only linear in the sample size and data dimensionality. Moreover, the bandwidth of the resultant density model is adaptive to local data distribution. Experiments on color image filtering/segmentation show that, the proposed method is dramatically faster than both the standard mean shift and fast mean shift implementations based on kd-trees while producing competitive image segmentation results.</abstract><cop>Heidelberg</cop><pub>SP Zhejiang University Press</pub><doi>10.1631/jzus.C0910668</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-1951 |
ispartof | Frontiers of information technology & electronic engineering, 2010-09, Vol.11 (9), p.677-689 |
issn | 1869-1951 2095-9184 1869-196X 2095-9230 |
language | eng |
recordid | cdi_proquest_miscellaneous_896246427 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Approximation Basis functions Clustering Clusters Color imagery Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Datasets Density Electrical Engineering Electronics and Microelectronics Estimators Image filters Image segmentation Instrumentation Kernels Mathematical analysis Mathematical models Networks |
title | Fast and accurate kernel density approximation using a divide-and-conquer approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20accurate%20kernel%20density%20approximation%20using%20a%20divide-and-conquer%20approach&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Jin,%20Yan-xia&rft.date=2010-09-01&rft.volume=11&rft.issue=9&rft.spage=677&rft.epage=689&rft.pages=677-689&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C0910668&rft_dat=%3Cproquest_cross%3E2918722757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918722757&rft_id=info:pmid/&rft_cqvip_id=34985797&rfr_iscdi=true |