Fast and accurate kernel density approximation using a divide-and-conquer approach

Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2010-09, Vol.11 (9), p.677-689
Hauptverfasser: Jin, Yan-xia, Zhang, Kai, Kwok, James T., Zhou, Han-chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 9
container_start_page 677
container_title Frontiers of information technology & electronic engineering
container_volume 11
creator Jin, Yan-xia
Zhang, Kai
Kwok, James T.
Zhou, Han-chang
description Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-conquer method is proposed to reduce these computational requirements. The dataset is first partitioned into a number of small, compact clusters. Components of the kernel estimator in each local cluster are then fit to a single, representative density function. The key novelty presented here is the efficient derivation of the representative density function using concepts from function approximation, such that the expensive kernel density estimator can be easily summarized by a highly compact model with very few basis functions. The proposed method has a time complexity that is only linear in the sample size and data dimensionality. Moreover, the bandwidth of the resultant density model is adaptive to local data distribution. Experiments on color image filtering/segmentation show that, the proposed method is dramatically faster than both the standard mean shift and fast mean shift implementations based on kd-trees while producing competitive image segmentation results.
doi_str_mv 10.1631/jzus.C0910668
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896246427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34985797</cqvip_id><sourcerecordid>2918722757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5232d83c58682a413051a2722cd0c2300403ff71e43c059bb085ef8c7573e8c13</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGqX7oMuXE3NY5JJllJ8QUEQBXchzWTatNNMm8yI9debMlVB8G5yF9855-YAcI7RGHOKr5efXRxPkMSIc3EEBlhwmWHJ345_doZPwSjGJUpDGZOcDsDznY4t1L6E2pgu6NbClQ3e1rC0Prp2B_VmE5oPt9atazzsovNzqGHp3l1psyTMTOO3nQ09qM3iDJxUuo52dHiH4PXu9mXykE2f7h8nN9PMUCzbjBFKSkENE1wQnWOKGNakIMSUyBCKUI5oVRXY5tQgJmczJJithClYQa0wmA7BVe-bYtMBsVVrF42ta-1t00UlJCc5z0mRyMs_5LLpgk_HKSKxSJl70yHIesqEJsZgK7UJ6dthpzBS-47VvmP13XHixz0fE-fnNvy6_ie4OAQsGj_fJo2aabOqXG0VzaVghSzoF1eViWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918722757</pqid></control><display><type>article</type><title>Fast and accurate kernel density approximation using a divide-and-conquer approach</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Jin, Yan-xia ; Zhang, Kai ; Kwok, James T. ; Zhou, Han-chang</creator><creatorcontrib>Jin, Yan-xia ; Zhang, Kai ; Kwok, James T. ; Zhou, Han-chang</creatorcontrib><description>Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-conquer method is proposed to reduce these computational requirements. The dataset is first partitioned into a number of small, compact clusters. Components of the kernel estimator in each local cluster are then fit to a single, representative density function. The key novelty presented here is the efficient derivation of the representative density function using concepts from function approximation, such that the expensive kernel density estimator can be easily summarized by a highly compact model with very few basis functions. The proposed method has a time complexity that is only linear in the sample size and data dimensionality. Moreover, the bandwidth of the resultant density model is adaptive to local data distribution. Experiments on color image filtering/segmentation show that, the proposed method is dramatically faster than both the standard mean shift and fast mean shift implementations based on kd-trees while producing competitive image segmentation results.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C0910668</identifier><language>eng</language><publisher>Heidelberg: SP Zhejiang University Press</publisher><subject>Algorithms ; Approximation ; Basis functions ; Clustering ; Clusters ; Color imagery ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Datasets ; Density ; Electrical Engineering ; Electronics and Microelectronics ; Estimators ; Image filters ; Image segmentation ; Instrumentation ; Kernels ; Mathematical analysis ; Mathematical models ; Networks</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2010-09, Vol.11 (9), p.677-689</ispartof><rights>Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-5232d83c58682a413051a2722cd0c2300403ff71e43c059bb085ef8c7573e8c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.C0910668$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918722757?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21375,27911,27912,33731,41475,42544,43792,51306,64370,64374,72224</link.rule.ids></links><search><creatorcontrib>Jin, Yan-xia</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Kwok, James T.</creatorcontrib><creatorcontrib>Zhou, Han-chang</creatorcontrib><title>Fast and accurate kernel density approximation using a divide-and-conquer approach</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-conquer method is proposed to reduce these computational requirements. The dataset is first partitioned into a number of small, compact clusters. Components of the kernel estimator in each local cluster are then fit to a single, representative density function. The key novelty presented here is the efficient derivation of the representative density function using concepts from function approximation, such that the expensive kernel density estimator can be easily summarized by a highly compact model with very few basis functions. The proposed method has a time complexity that is only linear in the sample size and data dimensionality. Moreover, the bandwidth of the resultant density model is adaptive to local data distribution. Experiments on color image filtering/segmentation show that, the proposed method is dramatically faster than both the standard mean shift and fast mean shift implementations based on kd-trees while producing competitive image segmentation results.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Color imagery</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Datasets</subject><subject>Density</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Estimators</subject><subject>Image filters</subject><subject>Image segmentation</subject><subject>Instrumentation</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Networks</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWGqX7oMuXE3NY5JJllJ8QUEQBXchzWTatNNMm8yI9debMlVB8G5yF9855-YAcI7RGHOKr5efXRxPkMSIc3EEBlhwmWHJ345_doZPwSjGJUpDGZOcDsDznY4t1L6E2pgu6NbClQ3e1rC0Prp2B_VmE5oPt9atazzsovNzqGHp3l1psyTMTOO3nQ09qM3iDJxUuo52dHiH4PXu9mXykE2f7h8nN9PMUCzbjBFKSkENE1wQnWOKGNakIMSUyBCKUI5oVRXY5tQgJmczJJithClYQa0wmA7BVe-bYtMBsVVrF42ta-1t00UlJCc5z0mRyMs_5LLpgk_HKSKxSJl70yHIesqEJsZgK7UJ6dthpzBS-47VvmP13XHixz0fE-fnNvy6_ie4OAQsGj_fJo2aabOqXG0VzaVghSzoF1eViWc</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Jin, Yan-xia</creator><creator>Zhang, Kai</creator><creator>Kwok, James T.</creator><creator>Zhou, Han-chang</creator><general>SP Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100901</creationdate><title>Fast and accurate kernel density approximation using a divide-and-conquer approach</title><author>Jin, Yan-xia ; Zhang, Kai ; Kwok, James T. ; Zhou, Han-chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5232d83c58682a413051a2722cd0c2300403ff71e43c059bb085ef8c7573e8c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Color imagery</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Datasets</topic><topic>Density</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Estimators</topic><topic>Image filters</topic><topic>Image segmentation</topic><topic>Instrumentation</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yan-xia</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Kwok, James T.</creatorcontrib><creatorcontrib>Zhou, Han-chang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yan-xia</au><au>Zhang, Kai</au><au>Kwok, James T.</au><au>Zhou, Han-chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and accurate kernel density approximation using a divide-and-conquer approach</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>11</volume><issue>9</issue><spage>677</spage><epage>689</epage><pages>677-689</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-conquer method is proposed to reduce these computational requirements. The dataset is first partitioned into a number of small, compact clusters. Components of the kernel estimator in each local cluster are then fit to a single, representative density function. The key novelty presented here is the efficient derivation of the representative density function using concepts from function approximation, such that the expensive kernel density estimator can be easily summarized by a highly compact model with very few basis functions. The proposed method has a time complexity that is only linear in the sample size and data dimensionality. Moreover, the bandwidth of the resultant density model is adaptive to local data distribution. Experiments on color image filtering/segmentation show that, the proposed method is dramatically faster than both the standard mean shift and fast mean shift implementations based on kd-trees while producing competitive image segmentation results.</abstract><cop>Heidelberg</cop><pub>SP Zhejiang University Press</pub><doi>10.1631/jzus.C0910668</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-1951
ispartof Frontiers of information technology & electronic engineering, 2010-09, Vol.11 (9), p.677-689
issn 1869-1951
2095-9184
1869-196X
2095-9230
language eng
recordid cdi_proquest_miscellaneous_896246427
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Approximation
Basis functions
Clustering
Clusters
Color imagery
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Datasets
Density
Electrical Engineering
Electronics and Microelectronics
Estimators
Image filters
Image segmentation
Instrumentation
Kernels
Mathematical analysis
Mathematical models
Networks
title Fast and accurate kernel density approximation using a divide-and-conquer approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20accurate%20kernel%20density%20approximation%20using%20a%20divide-and-conquer%20approach&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Jin,%20Yan-xia&rft.date=2010-09-01&rft.volume=11&rft.issue=9&rft.spage=677&rft.epage=689&rft.pages=677-689&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C0910668&rft_dat=%3Cproquest_cross%3E2918722757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918722757&rft_id=info:pmid/&rft_cqvip_id=34985797&rfr_iscdi=true