Emittance control and RF bunch compression in the NSRRC photoinjector

The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2011-05, Vol.637 (1), p.S91-S94
Hauptverfasser: Lau, W.K., Hung, S.B., Lee, A.P., Chou, C.S., Huang, N.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S94
container_issue 1
container_start_page S91
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 637
creator Lau, W.K.
Hung, S.B.
Lee, A.P.
Chou, C.S.
Huang, N.Y.
description The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.
doi_str_mv 10.1016/j.nima.2010.02.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896246146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900210002287</els_id><sourcerecordid>896246146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-11534c8612455468adc981418d35e30f3e3f9523370cb3e837cd007f25a017af3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU-5eWp9SfonBS-y7KqwKFQ9h2yasiltUpOs4Lc3y3r2XQaGmQfzQ-iWQE6AVPdDbs0kcwrJAJoDgzO0ILymWVPW1TlapBDPGgB6ia5CGCBdU_MFWq8nE6O0SmPlbPRuxNJ2uN3g3cGqfTKn2esQjLPYWBz3Gr--t-0Kz3sXnbGDVtH5a3TRyzHomz9dos_N-mP1nG3fnl5Wj9tMUc5iRkjJCsUrQouyLCouO9VwUhDesVIz6JlmfVNSxmpQO6Y5q1UHUPe0lEBq2bMlujv9nb37OugQxWSC0uMorXaHIHhT0aIiRZWS9JRU3oXgdS9mnwj5H0FAHJGJQRyRiSMyAVQkZKn0cCrptOHbaC-CMjqx6YxPO0XnzH_1X3Ntcxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896246146</pqid></control><display><type>article</type><title>Emittance control and RF bunch compression in the NSRRC photoinjector</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lau, W.K. ; Hung, S.B. ; Lee, A.P. ; Chou, C.S. ; Huang, N.Y.</creator><creatorcontrib>Lau, W.K. ; Hung, S.B. ; Lee, A.P. ; Chou, C.S. ; Huang, N.Y.</creatorcontrib><description>The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2010.02.030</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerators ; Beams (radiation) ; Bunch compression ; Emittance ; Magnetic fields ; Nuclear power generation ; Photoinjector ; Radio frequencies ; Reduction ; Solenoids</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2011-05, Vol.637 (1), p.S91-S94</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-11534c8612455468adc981418d35e30f3e3f9523370cb3e837cd007f25a017af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nima.2010.02.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Lau, W.K.</creatorcontrib><creatorcontrib>Hung, S.B.</creatorcontrib><creatorcontrib>Lee, A.P.</creatorcontrib><creatorcontrib>Chou, C.S.</creatorcontrib><creatorcontrib>Huang, N.Y.</creatorcontrib><title>Emittance control and RF bunch compression in the NSRRC photoinjector</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.</description><subject>Accelerators</subject><subject>Beams (radiation)</subject><subject>Bunch compression</subject><subject>Emittance</subject><subject>Magnetic fields</subject><subject>Nuclear power generation</subject><subject>Photoinjector</subject><subject>Radio frequencies</subject><subject>Reduction</subject><subject>Solenoids</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AU-5eWp9SfonBS-y7KqwKFQ9h2yasiltUpOs4Lc3y3r2XQaGmQfzQ-iWQE6AVPdDbs0kcwrJAJoDgzO0ILymWVPW1TlapBDPGgB6ia5CGCBdU_MFWq8nE6O0SmPlbPRuxNJ2uN3g3cGqfTKn2esQjLPYWBz3Gr--t-0Kz3sXnbGDVtH5a3TRyzHomz9dos_N-mP1nG3fnl5Wj9tMUc5iRkjJCsUrQouyLCouO9VwUhDesVIz6JlmfVNSxmpQO6Y5q1UHUPe0lEBq2bMlujv9nb37OugQxWSC0uMorXaHIHhT0aIiRZWS9JRU3oXgdS9mnwj5H0FAHJGJQRyRiSMyAVQkZKn0cCrptOHbaC-CMjqx6YxPO0XnzH_1X3Ntcxk</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Lau, W.K.</creator><creator>Hung, S.B.</creator><creator>Lee, A.P.</creator><creator>Chou, C.S.</creator><creator>Huang, N.Y.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Emittance control and RF bunch compression in the NSRRC photoinjector</title><author>Lau, W.K. ; Hung, S.B. ; Lee, A.P. ; Chou, C.S. ; Huang, N.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-11534c8612455468adc981418d35e30f3e3f9523370cb3e837cd007f25a017af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accelerators</topic><topic>Beams (radiation)</topic><topic>Bunch compression</topic><topic>Emittance</topic><topic>Magnetic fields</topic><topic>Nuclear power generation</topic><topic>Photoinjector</topic><topic>Radio frequencies</topic><topic>Reduction</topic><topic>Solenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, W.K.</creatorcontrib><creatorcontrib>Hung, S.B.</creatorcontrib><creatorcontrib>Lee, A.P.</creatorcontrib><creatorcontrib>Chou, C.S.</creatorcontrib><creatorcontrib>Huang, N.Y.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, W.K.</au><au>Hung, S.B.</au><au>Lee, A.P.</au><au>Chou, C.S.</au><au>Huang, N.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emittance control and RF bunch compression in the NSRRC photoinjector</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>637</volume><issue>1</issue><spage>S91</spage><epage>S94</epage><pages>S91-S94</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2010.02.030</doi></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2011-05, Vol.637 (1), p.S91-S94
issn 0168-9002
1872-9576
language eng
recordid cdi_proquest_miscellaneous_896246146
source Access via ScienceDirect (Elsevier)
subjects Accelerators
Beams (radiation)
Bunch compression
Emittance
Magnetic fields
Nuclear power generation
Photoinjector
Radio frequencies
Reduction
Solenoids
title Emittance control and RF bunch compression in the NSRRC photoinjector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T12%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emittance%20control%20and%20RF%20bunch%20compression%20in%20the%20NSRRC%20photoinjector&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Lau,%20W.K.&rft.date=2011-05-01&rft.volume=637&rft.issue=1&rft.spage=S91&rft.epage=S94&rft.pages=S91-S94&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2010.02.030&rft_dat=%3Cproquest_cross%3E896246146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896246146&rft_id=info:pmid/&rft_els_id=S0168900210002287&rfr_iscdi=true