Biologic verification based on pressure sensor keyboards and classifier fusion techniques
This paper presents a novel biologic verification method based on pressure sensor keyboards and classifier fusion techniques. The pressure sensor keyboard is a new product that occurs in the market recently. It produces a pressure sequence when keystroke occurs. The analysis of the pressure sequence...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on consumer electronics 2006-08, Vol.52 (3), p.1057-1063 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1063 |
---|---|
container_issue | 3 |
container_start_page | 1057 |
container_title | IEEE transactions on consumer electronics |
container_volume | 52 |
creator | Lv, H. Wen-Yuan Wang |
description | This paper presents a novel biologic verification method based on pressure sensor keyboards and classifier fusion techniques. The pressure sensor keyboard is a new product that occurs in the market recently. It produces a pressure sequence when keystroke occurs. The analysis of the pressure sequence should be a novel research area. In this paper, we use the pressure sequence and traditional keystroke dynamics in user authentication. Three methods (global features of pressure sequences, dynamic time warping, and traditional keystroke dynamics) are proposed for the authentication task. We combined the three methods together using a classifier fusion technique at last. Several experiments were performed on a database containing 5000 samples of 100 individuals and the best result were achieved utilizing all the method, obtaining an equal error rate of 1.41%. To make a comparison, the equal error rate is 2.04% when we use only the traditional keystroke dynamics. This approach can be used to improve the usual login-password authentication when the password is no more a secret |
doi_str_mv | 10.1109/TCE.2006.1706507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896242787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1706507</ieee_id><sourcerecordid>2343639701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a162d65ccd499926d3ab49d975f593bdb5aa027c782a62e510ed103bca9318b3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVoIdsk90AvppeevB3J1texXdKkEMhlLz0JWRon2jrWVrMu7L-vzS4EcpqBed6Z4WHslsOac7Dftpu7tQBQa65BSdAXbMWlNHXLhf7AVgDW1A2o5pJ9ItoB8FYKs2K_f6Q85OcUqn9YUp-CP6Q8Vp0njNXc7AsSTQUrwpFyqf7gscu-RKr8GKsweKI5haXqJ1qCBwwvY_o7IV2zj70fCG_O9Yptf95tNw_149P9r833xzo0xhxqz5WISoYQW2utULHxXWuj1bKXtuliJ70HoYM2wiuBkgNGDk0XvG246Zor9vW0dl_ycvbgXhMFHAY_Yp7IGatEK7TRM_nlHbnLUxnn35xR0oBu9QLBCQolExXs3b6kV1-OjoNbRLtZtFtEu7PoOfL5FEmI-Iafp_8Bf1d6Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865807477</pqid></control><display><type>article</type><title>Biologic verification based on pressure sensor keyboards and classifier fusion techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Lv, H. ; Wen-Yuan Wang</creator><creatorcontrib>Lv, H. ; Wen-Yuan Wang</creatorcontrib><description>This paper presents a novel biologic verification method based on pressure sensor keyboards and classifier fusion techniques. The pressure sensor keyboard is a new product that occurs in the market recently. It produces a pressure sequence when keystroke occurs. The analysis of the pressure sequence should be a novel research area. In this paper, we use the pressure sequence and traditional keystroke dynamics in user authentication. Three methods (global features of pressure sequences, dynamic time warping, and traditional keystroke dynamics) are proposed for the authentication task. We combined the three methods together using a classifier fusion technique at last. Several experiments were performed on a database containing 5000 samples of 100 individuals and the best result were achieved utilizing all the method, obtaining an equal error rate of 1.41%. To make a comparison, the equal error rate is 2.04% when we use only the traditional keystroke dynamics. This approach can be used to improve the usual login-password authentication when the password is no more a secret</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2006.1706507</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Authentication ; Biological information theory ; Biometrics ; Biosensors ; Classifiers ; Dynamics ; Error analysis ; Errors ; Intelligent sensors ; Keyboards ; Pressure sensors ; Sensor fusion ; Sensor phenomena and characterization ; Spatial databases ; Studies ; Tasks</subject><ispartof>IEEE transactions on consumer electronics, 2006-08, Vol.52 (3), p.1057-1063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a162d65ccd499926d3ab49d975f593bdb5aa027c782a62e510ed103bca9318b3</citedby><cites>FETCH-LOGICAL-c388t-a162d65ccd499926d3ab49d975f593bdb5aa027c782a62e510ed103bca9318b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1706507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1706507$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lv, H.</creatorcontrib><creatorcontrib>Wen-Yuan Wang</creatorcontrib><title>Biologic verification based on pressure sensor keyboards and classifier fusion techniques</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>This paper presents a novel biologic verification method based on pressure sensor keyboards and classifier fusion techniques. The pressure sensor keyboard is a new product that occurs in the market recently. It produces a pressure sequence when keystroke occurs. The analysis of the pressure sequence should be a novel research area. In this paper, we use the pressure sequence and traditional keystroke dynamics in user authentication. Three methods (global features of pressure sequences, dynamic time warping, and traditional keystroke dynamics) are proposed for the authentication task. We combined the three methods together using a classifier fusion technique at last. Several experiments were performed on a database containing 5000 samples of 100 individuals and the best result were achieved utilizing all the method, obtaining an equal error rate of 1.41%. To make a comparison, the equal error rate is 2.04% when we use only the traditional keystroke dynamics. This approach can be used to improve the usual login-password authentication when the password is no more a secret</description><subject>Authentication</subject><subject>Biological information theory</subject><subject>Biometrics</subject><subject>Biosensors</subject><subject>Classifiers</subject><subject>Dynamics</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Intelligent sensors</subject><subject>Keyboards</subject><subject>Pressure sensors</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Spatial databases</subject><subject>Studies</subject><subject>Tasks</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1r3DAQhkVoIdsk90AvppeevB3J1texXdKkEMhlLz0JWRon2jrWVrMu7L-vzS4EcpqBed6Z4WHslsOac7Dftpu7tQBQa65BSdAXbMWlNHXLhf7AVgDW1A2o5pJ9ItoB8FYKs2K_f6Q85OcUqn9YUp-CP6Q8Vp0njNXc7AsSTQUrwpFyqf7gscu-RKr8GKsweKI5haXqJ1qCBwwvY_o7IV2zj70fCG_O9Yptf95tNw_149P9r833xzo0xhxqz5WISoYQW2utULHxXWuj1bKXtuliJ70HoYM2wiuBkgNGDk0XvG246Zor9vW0dl_ycvbgXhMFHAY_Yp7IGatEK7TRM_nlHbnLUxnn35xR0oBu9QLBCQolExXs3b6kV1-OjoNbRLtZtFtEu7PoOfL5FEmI-Iafp_8Bf1d6Ww</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Lv, H.</creator><creator>Wen-Yuan Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20060801</creationdate><title>Biologic verification based on pressure sensor keyboards and classifier fusion techniques</title><author>Lv, H. ; Wen-Yuan Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a162d65ccd499926d3ab49d975f593bdb5aa027c782a62e510ed103bca9318b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Authentication</topic><topic>Biological information theory</topic><topic>Biometrics</topic><topic>Biosensors</topic><topic>Classifiers</topic><topic>Dynamics</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Intelligent sensors</topic><topic>Keyboards</topic><topic>Pressure sensors</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Spatial databases</topic><topic>Studies</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, H.</creatorcontrib><creatorcontrib>Wen-Yuan Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, H.</au><au>Wen-Yuan Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biologic verification based on pressure sensor keyboards and classifier fusion techniques</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>52</volume><issue>3</issue><spage>1057</spage><epage>1063</epage><pages>1057-1063</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>This paper presents a novel biologic verification method based on pressure sensor keyboards and classifier fusion techniques. The pressure sensor keyboard is a new product that occurs in the market recently. It produces a pressure sequence when keystroke occurs. The analysis of the pressure sequence should be a novel research area. In this paper, we use the pressure sequence and traditional keystroke dynamics in user authentication. Three methods (global features of pressure sequences, dynamic time warping, and traditional keystroke dynamics) are proposed for the authentication task. We combined the three methods together using a classifier fusion technique at last. Several experiments were performed on a database containing 5000 samples of 100 individuals and the best result were achieved utilizing all the method, obtaining an equal error rate of 1.41%. To make a comparison, the equal error rate is 2.04% when we use only the traditional keystroke dynamics. This approach can be used to improve the usual login-password authentication when the password is no more a secret</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2006.1706507</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2006-08, Vol.52 (3), p.1057-1063 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_proquest_miscellaneous_896242787 |
source | IEEE Electronic Library (IEL) |
subjects | Authentication Biological information theory Biometrics Biosensors Classifiers Dynamics Error analysis Errors Intelligent sensors Keyboards Pressure sensors Sensor fusion Sensor phenomena and characterization Spatial databases Studies Tasks |
title | Biologic verification based on pressure sensor keyboards and classifier fusion techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biologic%20verification%20based%20on%20pressure%20sensor%20keyboards%20and%20classifier%20fusion%20techniques&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Lv,%20H.&rft.date=2006-08-01&rft.volume=52&rft.issue=3&rft.spage=1057&rft.epage=1063&rft.pages=1057-1063&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2006.1706507&rft_dat=%3Cproquest_RIE%3E2343639701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865807477&rft_id=info:pmid/&rft_ieee_id=1706507&rfr_iscdi=true |