Extended rotation-free plate and beam elements with shear deformation effects

This paper describes a methodology for extending rotation‐free plate and beam elements to accounting for transverse shear deformation effects. The ingredients for the element formulation are a Hu–Washizu‐type mixed functional, a linear interpolation for the deflection and the shear angles over stand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2010-07, Vol.83 (2), p.196-227
Hauptverfasser: ONATE, Eugenio, ZARATE, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 2
container_start_page 196
container_title International journal for numerical methods in engineering
container_volume 83
creator ONATE, Eugenio
ZARATE, Francisco
description This paper describes a methodology for extending rotation‐free plate and beam elements to accounting for transverse shear deformation effects. The ingredients for the element formulation are a Hu–Washizu‐type mixed functional, a linear interpolation for the deflection and the shear angles over standard finite elements and a finite volume approach for computing the bending moments and the curvatures over a patch of elements. As a first application of the general procedure, we present an extension of the three‐noded rotation‐free basic plate triangle (BPT) originally developed for thin plate analysis to account for shear deformation effects of relevance for thick plates and composite‐laminated plates. The nodal deflection degrees of freedom (DOFs) of the original BPT element are enhanced with the two shear deformation angles. This allows to compute the bending and shear deformation energies leading to a simple triangular plate element with three DOFs per node (termed BPT+ element). For the thin plate case, the shear angles vanish and the element reproduces the good behaviour of the original thin BPT element. As a consequence the element is applicable to thick and thin plate situations without exhibiting shear locking effects. The numerical solution for the thick case can be found iteratively starting from the deflection values for the Kirchhoff theory using the original thin BPT element. A two‐noded rotation‐free beam element termed CCB+ applicable to slender and thick beams is derived as a particular case of the plate formulation. The examples presented show the robustness and accuracy of the BPT+ and the CCB+ elements for thick and thin plate and beam problems. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.2836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896238102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896238102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3996-b0a89552aef520bfc21435dd5284e0aca8781a25058196a482c57f1a6f978433</originalsourceid><addsrcrecordid>eNp10DtPwzAUhmELgUQpSPwELwiWgC9xYo8ISgEVWJDKZp06x2ogl2K7ovx7WlqxMXnwc97hI-SUs0vOmLjqWrwUWhZ7ZMCZKTMmWLlPBusvkymj-SE5ivGdMc4VkwPyNFol7CqsaOgTpLrvMh8Q6aKBhBS6is4QWooNttilSL_qNKdxjhBohb4P7e8NRe_RpXhMDjw0EU9275C83o1eb-6zycv44eZ6kjlpTJHNGGijlAD0SrCZd4LnUlWVEjpHBg50qTkIxZTmpoBcC6dKz6HwptS5lENyvs0uQv-5xJhsW0eHTQMd9stotSmE1JyJtbzYShf6GAN6uwh1C-HbcmY3e9n1Xnaz15qe7aIQHTQ-QOfq-OeFMFzzcpPMtu6rbvD73559fhrtujtfx4SrPw_hwxalLJWdPo_tlN2OVf74ZifyB3xfh0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896238102</pqid></control><display><type>article</type><title>Extended rotation-free plate and beam elements with shear deformation effects</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>ONATE, Eugenio ; ZARATE, Francisco</creator><creatorcontrib>ONATE, Eugenio ; ZARATE, Francisco</creatorcontrib><description>This paper describes a methodology for extending rotation‐free plate and beam elements to accounting for transverse shear deformation effects. The ingredients for the element formulation are a Hu–Washizu‐type mixed functional, a linear interpolation for the deflection and the shear angles over standard finite elements and a finite volume approach for computing the bending moments and the curvatures over a patch of elements. As a first application of the general procedure, we present an extension of the three‐noded rotation‐free basic plate triangle (BPT) originally developed for thin plate analysis to account for shear deformation effects of relevance for thick plates and composite‐laminated plates. The nodal deflection degrees of freedom (DOFs) of the original BPT element are enhanced with the two shear deformation angles. This allows to compute the bending and shear deformation energies leading to a simple triangular plate element with three DOFs per node (termed BPT+ element). For the thin plate case, the shear angles vanish and the element reproduces the good behaviour of the original thin BPT element. As a consequence the element is applicable to thick and thin plate situations without exhibiting shear locking effects. The numerical solution for the thick case can be found iteratively starting from the deflection values for the Kirchhoff theory using the original thin BPT element. A two‐noded rotation‐free beam element termed CCB+ applicable to slender and thick beams is derived as a particular case of the plate formulation. The examples presented show the robustness and accuracy of the BPT+ and the CCB+ elements for thick and thin plate and beam problems. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2836</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Curvature ; Deflection ; Exact sciences and technology ; Finite element method ; finite elements ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; rotation-free beam ; rotation-free triangle ; Sciences and techniques of general use ; Shear ; Shear deformation ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; thick and thin plates and beams ; Thin plates</subject><ispartof>International journal for numerical methods in engineering, 2010-07, Vol.83 (2), p.196-227</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3996-b0a89552aef520bfc21435dd5284e0aca8781a25058196a482c57f1a6f978433</citedby><cites>FETCH-LOGICAL-c3996-b0a89552aef520bfc21435dd5284e0aca8781a25058196a482c57f1a6f978433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2836$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2836$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22918172$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ONATE, Eugenio</creatorcontrib><creatorcontrib>ZARATE, Francisco</creatorcontrib><title>Extended rotation-free plate and beam elements with shear deformation effects</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>This paper describes a methodology for extending rotation‐free plate and beam elements to accounting for transverse shear deformation effects. The ingredients for the element formulation are a Hu–Washizu‐type mixed functional, a linear interpolation for the deflection and the shear angles over standard finite elements and a finite volume approach for computing the bending moments and the curvatures over a patch of elements. As a first application of the general procedure, we present an extension of the three‐noded rotation‐free basic plate triangle (BPT) originally developed for thin plate analysis to account for shear deformation effects of relevance for thick plates and composite‐laminated plates. The nodal deflection degrees of freedom (DOFs) of the original BPT element are enhanced with the two shear deformation angles. This allows to compute the bending and shear deformation energies leading to a simple triangular plate element with three DOFs per node (termed BPT+ element). For the thin plate case, the shear angles vanish and the element reproduces the good behaviour of the original thin BPT element. As a consequence the element is applicable to thick and thin plate situations without exhibiting shear locking effects. The numerical solution for the thick case can be found iteratively starting from the deflection values for the Kirchhoff theory using the original thin BPT element. A two‐noded rotation‐free beam element termed CCB+ applicable to slender and thick beams is derived as a particular case of the plate formulation. The examples presented show the robustness and accuracy of the BPT+ and the CCB+ elements for thick and thin plate and beam problems. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Curvature</subject><subject>Deflection</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>finite elements</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>rotation-free beam</subject><subject>rotation-free triangle</subject><subject>Sciences and techniques of general use</subject><subject>Shear</subject><subject>Shear deformation</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>thick and thin plates and beams</subject><subject>Thin plates</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUhmELgUQpSPwELwiWgC9xYo8ISgEVWJDKZp06x2ogl2K7ovx7WlqxMXnwc97hI-SUs0vOmLjqWrwUWhZ7ZMCZKTMmWLlPBusvkymj-SE5ivGdMc4VkwPyNFol7CqsaOgTpLrvMh8Q6aKBhBS6is4QWooNttilSL_qNKdxjhBohb4P7e8NRe_RpXhMDjw0EU9275C83o1eb-6zycv44eZ6kjlpTJHNGGijlAD0SrCZd4LnUlWVEjpHBg50qTkIxZTmpoBcC6dKz6HwptS5lENyvs0uQv-5xJhsW0eHTQMd9stotSmE1JyJtbzYShf6GAN6uwh1C-HbcmY3e9n1Xnaz15qe7aIQHTQ-QOfq-OeFMFzzcpPMtu6rbvD73559fhrtujtfx4SrPw_hwxalLJWdPo_tlN2OVf74ZifyB3xfh0I</recordid><startdate>20100709</startdate><enddate>20100709</enddate><creator>ONATE, Eugenio</creator><creator>ZARATE, Francisco</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100709</creationdate><title>Extended rotation-free plate and beam elements with shear deformation effects</title><author>ONATE, Eugenio ; ZARATE, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3996-b0a89552aef520bfc21435dd5284e0aca8781a25058196a482c57f1a6f978433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Curvature</topic><topic>Deflection</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>finite elements</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>rotation-free beam</topic><topic>rotation-free triangle</topic><topic>Sciences and techniques of general use</topic><topic>Shear</topic><topic>Shear deformation</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>thick and thin plates and beams</topic><topic>Thin plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ONATE, Eugenio</creatorcontrib><creatorcontrib>ZARATE, Francisco</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ONATE, Eugenio</au><au>ZARATE, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended rotation-free plate and beam elements with shear deformation effects</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2010-07-09</date><risdate>2010</risdate><volume>83</volume><issue>2</issue><spage>196</spage><epage>227</epage><pages>196-227</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>This paper describes a methodology for extending rotation‐free plate and beam elements to accounting for transverse shear deformation effects. The ingredients for the element formulation are a Hu–Washizu‐type mixed functional, a linear interpolation for the deflection and the shear angles over standard finite elements and a finite volume approach for computing the bending moments and the curvatures over a patch of elements. As a first application of the general procedure, we present an extension of the three‐noded rotation‐free basic plate triangle (BPT) originally developed for thin plate analysis to account for shear deformation effects of relevance for thick plates and composite‐laminated plates. The nodal deflection degrees of freedom (DOFs) of the original BPT element are enhanced with the two shear deformation angles. This allows to compute the bending and shear deformation energies leading to a simple triangular plate element with three DOFs per node (termed BPT+ element). For the thin plate case, the shear angles vanish and the element reproduces the good behaviour of the original thin BPT element. As a consequence the element is applicable to thick and thin plate situations without exhibiting shear locking effects. The numerical solution for the thick case can be found iteratively starting from the deflection values for the Kirchhoff theory using the original thin BPT element. A two‐noded rotation‐free beam element termed CCB+ applicable to slender and thick beams is derived as a particular case of the plate formulation. The examples presented show the robustness and accuracy of the BPT+ and the CCB+ elements for thick and thin plate and beam problems. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.2836</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2010-07, Vol.83 (2), p.196-227
issn 0029-5981
1097-0207
1097-0207
language eng
recordid cdi_proquest_miscellaneous_896238102
source Wiley Online Library Journals Frontfile Complete
subjects Curvature
Deflection
Exact sciences and technology
Finite element method
finite elements
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Physics
rotation-free beam
rotation-free triangle
Sciences and techniques of general use
Shear
Shear deformation
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
thick and thin plates and beams
Thin plates
title Extended rotation-free plate and beam elements with shear deformation effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20rotation-free%20plate%20and%20beam%20elements%20with%20shear%20deformation%20effects&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=ONATE,%20Eugenio&rft.date=2010-07-09&rft.volume=83&rft.issue=2&rft.spage=196&rft.epage=227&rft.pages=196-227&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2836&rft_dat=%3Cproquest_cross%3E896238102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896238102&rft_id=info:pmid/&rfr_iscdi=true