q-Generalization of the inverse Fourier transform

A wide class of physical distributions appears to follow the q-Gaussian form, which plays the role of attractor according to a q-generalized Central Limit Theorem, where a q-generalized Fourier transform plays an important role. We introduce here a method which determines a distribution from the kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2011-05, Vol.375 (21), p.2085-2088
Hauptverfasser: Jauregui, M., Tsallis, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2088
container_issue 21
container_start_page 2085
container_title Physics letters. A
container_volume 375
creator Jauregui, M.
Tsallis, C.
description A wide class of physical distributions appears to follow the q-Gaussian form, which plays the role of attractor according to a q-generalized Central Limit Theorem, where a q-generalized Fourier transform plays an important role. We introduce here a method which determines a distribution from the knowledge of its q-Fourier transform and some supplementary information. This procedure involves a recently q-generalized representation of the Dirac delta and the class of functions on which it acts. The present method conveniently extends the inverse of the standard Fourier transform, and is therefore expected to be very useful in the study of many complex systems. ► We present a method to invert the q-Fourier transform of a distribution. ► We illustrate when Dirac delta can be represented using q-exponentials. ► We describe a family of functions for which this new representation works.
doi_str_mv 10.1016/j.physleta.2011.04.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896237877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960111004762</els_id><sourcerecordid>896237877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6f69d9568c7147a124a896c91965b506864c30e6984f97aadc7f0bbe02a8504b3</originalsourceid><addsrcrecordid>eNqFkEFLwzAYhoMoOKd_QXrz1PqlTZPmpgy3CQMveg5p-oVldM2WdIP5682Ynj29l_d94H0IeaRQUKD8eVPs1qfY46iLEigtgBVA2RWZ0EZUeclKeU0mUIk6lxzoLbmLcQOQliAnhO7zBQ4YdO--9ej8kHmbjWvM3HDEEDGb-0NwGLIx6CFaH7b35MbqPuLDb07J1_ztc7bMVx-L99nrKjeVLMecWy47WfPGCMqEpiXTjeRGUsnrtgbecGYqQC4bZqXQujPCQtsilLqpgbXVlDxduLvg9weMo9q6aLDv9YD-EFWilZVohEhNfmma4GMMaNUuuK0OJ0VBnRWpjfpTpM6KFDCVFKXhy2WI6ccxvVTROBwMdi6gGVXn3X-IH518cko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896237877</pqid></control><display><type>article</type><title>q-Generalization of the inverse Fourier transform</title><source>Elsevier ScienceDirect Journals</source><creator>Jauregui, M. ; Tsallis, C.</creator><creatorcontrib>Jauregui, M. ; Tsallis, C.</creatorcontrib><description>A wide class of physical distributions appears to follow the q-Gaussian form, which plays the role of attractor according to a q-generalized Central Limit Theorem, where a q-generalized Fourier transform plays an important role. We introduce here a method which determines a distribution from the knowledge of its q-Fourier transform and some supplementary information. This procedure involves a recently q-generalized representation of the Dirac delta and the class of functions on which it acts. The present method conveniently extends the inverse of the standard Fourier transform, and is therefore expected to be very useful in the study of many complex systems. ► We present a method to invert the q-Fourier transform of a distribution. ► We illustrate when Dirac delta can be represented using q-exponentials. ► We describe a family of functions for which this new representation works.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2011.04.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Complex systems ; Deltas ; Dirac delta ; Fourier transforms ; Inverse ; Nonextensive statistical mechanics ; q-Fourier transform ; Representations ; Solid state physics ; Transforms</subject><ispartof>Physics letters. A, 2011-05, Vol.375 (21), p.2085-2088</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6f69d9568c7147a124a896c91965b506864c30e6984f97aadc7f0bbe02a8504b3</citedby><cites>FETCH-LOGICAL-c392t-6f69d9568c7147a124a896c91965b506864c30e6984f97aadc7f0bbe02a8504b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0375960111004762$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jauregui, M.</creatorcontrib><creatorcontrib>Tsallis, C.</creatorcontrib><title>q-Generalization of the inverse Fourier transform</title><title>Physics letters. A</title><description>A wide class of physical distributions appears to follow the q-Gaussian form, which plays the role of attractor according to a q-generalized Central Limit Theorem, where a q-generalized Fourier transform plays an important role. We introduce here a method which determines a distribution from the knowledge of its q-Fourier transform and some supplementary information. This procedure involves a recently q-generalized representation of the Dirac delta and the class of functions on which it acts. The present method conveniently extends the inverse of the standard Fourier transform, and is therefore expected to be very useful in the study of many complex systems. ► We present a method to invert the q-Fourier transform of a distribution. ► We illustrate when Dirac delta can be represented using q-exponentials. ► We describe a family of functions for which this new representation works.</description><subject>Complex systems</subject><subject>Deltas</subject><subject>Dirac delta</subject><subject>Fourier transforms</subject><subject>Inverse</subject><subject>Nonextensive statistical mechanics</subject><subject>q-Fourier transform</subject><subject>Representations</subject><subject>Solid state physics</subject><subject>Transforms</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAYhoMoOKd_QXrz1PqlTZPmpgy3CQMveg5p-oVldM2WdIP5682Ynj29l_d94H0IeaRQUKD8eVPs1qfY46iLEigtgBVA2RWZ0EZUeclKeU0mUIk6lxzoLbmLcQOQliAnhO7zBQ4YdO--9ej8kHmbjWvM3HDEEDGb-0NwGLIx6CFaH7b35MbqPuLDb07J1_ztc7bMVx-L99nrKjeVLMecWy47WfPGCMqEpiXTjeRGUsnrtgbecGYqQC4bZqXQujPCQtsilLqpgbXVlDxduLvg9weMo9q6aLDv9YD-EFWilZVohEhNfmma4GMMaNUuuK0OJ0VBnRWpjfpTpM6KFDCVFKXhy2WI6ccxvVTROBwMdi6gGVXn3X-IH518cko</recordid><startdate>20110523</startdate><enddate>20110523</enddate><creator>Jauregui, M.</creator><creator>Tsallis, C.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110523</creationdate><title>q-Generalization of the inverse Fourier transform</title><author>Jauregui, M. ; Tsallis, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6f69d9568c7147a124a896c91965b506864c30e6984f97aadc7f0bbe02a8504b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Complex systems</topic><topic>Deltas</topic><topic>Dirac delta</topic><topic>Fourier transforms</topic><topic>Inverse</topic><topic>Nonextensive statistical mechanics</topic><topic>q-Fourier transform</topic><topic>Representations</topic><topic>Solid state physics</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jauregui, M.</creatorcontrib><creatorcontrib>Tsallis, C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jauregui, M.</au><au>Tsallis, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>q-Generalization of the inverse Fourier transform</atitle><jtitle>Physics letters. A</jtitle><date>2011-05-23</date><risdate>2011</risdate><volume>375</volume><issue>21</issue><spage>2085</spage><epage>2088</epage><pages>2085-2088</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>A wide class of physical distributions appears to follow the q-Gaussian form, which plays the role of attractor according to a q-generalized Central Limit Theorem, where a q-generalized Fourier transform plays an important role. We introduce here a method which determines a distribution from the knowledge of its q-Fourier transform and some supplementary information. This procedure involves a recently q-generalized representation of the Dirac delta and the class of functions on which it acts. The present method conveniently extends the inverse of the standard Fourier transform, and is therefore expected to be very useful in the study of many complex systems. ► We present a method to invert the q-Fourier transform of a distribution. ► We illustrate when Dirac delta can be represented using q-exponentials. ► We describe a family of functions for which this new representation works.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2011.04.014</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2011-05, Vol.375 (21), p.2085-2088
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_896237877
source Elsevier ScienceDirect Journals
subjects Complex systems
Deltas
Dirac delta
Fourier transforms
Inverse
Nonextensive statistical mechanics
q-Fourier transform
Representations
Solid state physics
Transforms
title q-Generalization of the inverse Fourier transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=q-Generalization%20of%20the%20inverse%20Fourier%20transform&rft.jtitle=Physics%20letters.%20A&rft.au=Jauregui,%20M.&rft.date=2011-05-23&rft.volume=375&rft.issue=21&rft.spage=2085&rft.epage=2088&rft.pages=2085-2088&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2011.04.014&rft_dat=%3Cproquest_cross%3E896237877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896237877&rft_id=info:pmid/&rft_els_id=S0375960111004762&rfr_iscdi=true