Classification of generalized normal homogeneous Riemannian manifolds of positive Euler characteristic

The authors give a short survey of previous results on generalized normal homogeneous ( δ-homogeneous, in other terms) Riemannian manifolds, forming a new proper subclass of geodesic orbit spaces with nonnegative sectional curvature, which properly includes the class of all normal homogeneous Rieman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications 2011-08, Vol.29 (4), p.533-546
Hauptverfasser: Berestovskiĭ, V.N., Nikitenko, E.V., Nikonorov, Yu.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 4
container_start_page 533
container_title Differential geometry and its applications
container_volume 29
creator Berestovskiĭ, V.N.
Nikitenko, E.V.
Nikonorov, Yu.G.
description The authors give a short survey of previous results on generalized normal homogeneous ( δ-homogeneous, in other terms) Riemannian manifolds, forming a new proper subclass of geodesic orbit spaces with nonnegative sectional curvature, which properly includes the class of all normal homogeneous Riemannian manifolds. As a continuation and an application of these results, they prove that the family of all compact simply connected indecomposable generalized normal homogeneous Riemannian manifolds with positive Euler characteristic, which are not normal homogeneous, consists exactly of all generalized flag manifolds Sp ( l ) / U ( 1 ) ⋅ Sp ( l − 1 ) = C P 2 l − 1 , l ⩾ 2 , supplied with invariant Riemannian metrics of positive sectional curvature with the pinching constants (the ratio of the minimal sectional curvature to the maximal one) in the open interval ( 1 / 16 , 1 / 4 ) . This implies very unusual geometric properties of the adjoint representation of Sp ( l ) , l ⩾ 2 . Some unsolved questions are suggested.
doi_str_mv 10.1016/j.difgeo.2011.04.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896231124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926224511000714</els_id><sourcerecordid>896231124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-1b7e5e67d04364fdd643817ccf6158a999cfc5af70885785dd1a24d7c7c9fa523</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-Aw-9eWpN0rRJL4Is6x9YEETPISYvu29pmzXpLuint3U9exoYZob3foRcM1owyurbbeHQryEUnDJWUFHQkp-QGVOS53WjxCmZ0YbXOeeiOicXKW0pZbwRfEb8ojUpoUdrBgx9Fny2hh6iafEbXNaH2Jk224QuTHbYp-wVoTN9j6bPRkUfWpem2i4kHPAA2XLfQszsxkRjB4iYBrSX5MybNsHVn87J-8PybfGUr14enxf3q9yWSgw5-5BQQS0dFWUtvHO1KBWT1vqaVco0TWO9rYyXVKlKqso5Zrhw0krbeFPxck5ujru7GD73kAbdYbLQtub3eK2ampeMcTEmxTFpY0gpgte7iJ2JX5pRPVHVW32kqieqmgo9Uh1rd8cajF8cEKJOFqG34DCCHbQL-P_AD2sShMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896231124</pqid></control><display><type>article</type><title>Classification of generalized normal homogeneous Riemannian manifolds of positive Euler characteristic</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Berestovskiĭ, V.N. ; Nikitenko, E.V. ; Nikonorov, Yu.G.</creator><creatorcontrib>Berestovskiĭ, V.N. ; Nikitenko, E.V. ; Nikonorov, Yu.G.</creatorcontrib><description>The authors give a short survey of previous results on generalized normal homogeneous ( δ-homogeneous, in other terms) Riemannian manifolds, forming a new proper subclass of geodesic orbit spaces with nonnegative sectional curvature, which properly includes the class of all normal homogeneous Riemannian manifolds. As a continuation and an application of these results, they prove that the family of all compact simply connected indecomposable generalized normal homogeneous Riemannian manifolds with positive Euler characteristic, which are not normal homogeneous, consists exactly of all generalized flag manifolds Sp ( l ) / U ( 1 ) ⋅ Sp ( l − 1 ) = C P 2 l − 1 , l ⩾ 2 , supplied with invariant Riemannian metrics of positive sectional curvature with the pinching constants (the ratio of the minimal sectional curvature to the maximal one) in the open interval ( 1 / 16 , 1 / 4 ) . This implies very unusual geometric properties of the adjoint representation of Sp ( l ) , l ⩾ 2 . Some unsolved questions are suggested.</description><identifier>ISSN: 0926-2245</identifier><identifier>EISSN: 1872-6984</identifier><identifier>DOI: 10.1016/j.difgeo.2011.04.032</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Classification ; Clifford–Wolf homogeneous Riemannian manifolds ; Clifford–Wolf translations ; Constants ; Curvature ; G.o. spaces ; Generalized normal homogeneous Riemannian manifolds ; Geodesics ; Homogeneous spaces ; Homogeneous spaces of positive Euler characteristic ; Invariants ; Manifolds ; Mathematical analysis ; Normal homogeneous Riemannian manifolds ; Orbits ; δ-Homogeneous Riemannian manifolds</subject><ispartof>Differential geometry and its applications, 2011-08, Vol.29 (4), p.533-546</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-1b7e5e67d04364fdd643817ccf6158a999cfc5af70885785dd1a24d7c7c9fa523</citedby><cites>FETCH-LOGICAL-c384t-1b7e5e67d04364fdd643817ccf6158a999cfc5af70885785dd1a24d7c7c9fa523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.difgeo.2011.04.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Berestovskiĭ, V.N.</creatorcontrib><creatorcontrib>Nikitenko, E.V.</creatorcontrib><creatorcontrib>Nikonorov, Yu.G.</creatorcontrib><title>Classification of generalized normal homogeneous Riemannian manifolds of positive Euler characteristic</title><title>Differential geometry and its applications</title><description>The authors give a short survey of previous results on generalized normal homogeneous ( δ-homogeneous, in other terms) Riemannian manifolds, forming a new proper subclass of geodesic orbit spaces with nonnegative sectional curvature, which properly includes the class of all normal homogeneous Riemannian manifolds. As a continuation and an application of these results, they prove that the family of all compact simply connected indecomposable generalized normal homogeneous Riemannian manifolds with positive Euler characteristic, which are not normal homogeneous, consists exactly of all generalized flag manifolds Sp ( l ) / U ( 1 ) ⋅ Sp ( l − 1 ) = C P 2 l − 1 , l ⩾ 2 , supplied with invariant Riemannian metrics of positive sectional curvature with the pinching constants (the ratio of the minimal sectional curvature to the maximal one) in the open interval ( 1 / 16 , 1 / 4 ) . This implies very unusual geometric properties of the adjoint representation of Sp ( l ) , l ⩾ 2 . Some unsolved questions are suggested.</description><subject>Classification</subject><subject>Clifford–Wolf homogeneous Riemannian manifolds</subject><subject>Clifford–Wolf translations</subject><subject>Constants</subject><subject>Curvature</subject><subject>G.o. spaces</subject><subject>Generalized normal homogeneous Riemannian manifolds</subject><subject>Geodesics</subject><subject>Homogeneous spaces</subject><subject>Homogeneous spaces of positive Euler characteristic</subject><subject>Invariants</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Normal homogeneous Riemannian manifolds</subject><subject>Orbits</subject><subject>δ-Homogeneous Riemannian manifolds</subject><issn>0926-2245</issn><issn>1872-6984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-Aw-9eWpN0rRJL4Is6x9YEETPISYvu29pmzXpLuint3U9exoYZob3foRcM1owyurbbeHQryEUnDJWUFHQkp-QGVOS53WjxCmZ0YbXOeeiOicXKW0pZbwRfEb8ojUpoUdrBgx9Fny2hh6iafEbXNaH2Jk224QuTHbYp-wVoTN9j6bPRkUfWpem2i4kHPAA2XLfQszsxkRjB4iYBrSX5MybNsHVn87J-8PybfGUr14enxf3q9yWSgw5-5BQQS0dFWUtvHO1KBWT1vqaVco0TWO9rYyXVKlKqso5Zrhw0krbeFPxck5ujru7GD73kAbdYbLQtub3eK2ampeMcTEmxTFpY0gpgte7iJ2JX5pRPVHVW32kqieqmgo9Uh1rd8cajF8cEKJOFqG34DCCHbQL-P_AD2sShMg</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Berestovskiĭ, V.N.</creator><creator>Nikitenko, E.V.</creator><creator>Nikonorov, Yu.G.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Classification of generalized normal homogeneous Riemannian manifolds of positive Euler characteristic</title><author>Berestovskiĭ, V.N. ; Nikitenko, E.V. ; Nikonorov, Yu.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-1b7e5e67d04364fdd643817ccf6158a999cfc5af70885785dd1a24d7c7c9fa523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification</topic><topic>Clifford–Wolf homogeneous Riemannian manifolds</topic><topic>Clifford–Wolf translations</topic><topic>Constants</topic><topic>Curvature</topic><topic>G.o. spaces</topic><topic>Generalized normal homogeneous Riemannian manifolds</topic><topic>Geodesics</topic><topic>Homogeneous spaces</topic><topic>Homogeneous spaces of positive Euler characteristic</topic><topic>Invariants</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Normal homogeneous Riemannian manifolds</topic><topic>Orbits</topic><topic>δ-Homogeneous Riemannian manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berestovskiĭ, V.N.</creatorcontrib><creatorcontrib>Nikitenko, E.V.</creatorcontrib><creatorcontrib>Nikonorov, Yu.G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential geometry and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berestovskiĭ, V.N.</au><au>Nikitenko, E.V.</au><au>Nikonorov, Yu.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of generalized normal homogeneous Riemannian manifolds of positive Euler characteristic</atitle><jtitle>Differential geometry and its applications</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>29</volume><issue>4</issue><spage>533</spage><epage>546</epage><pages>533-546</pages><issn>0926-2245</issn><eissn>1872-6984</eissn><abstract>The authors give a short survey of previous results on generalized normal homogeneous ( δ-homogeneous, in other terms) Riemannian manifolds, forming a new proper subclass of geodesic orbit spaces with nonnegative sectional curvature, which properly includes the class of all normal homogeneous Riemannian manifolds. As a continuation and an application of these results, they prove that the family of all compact simply connected indecomposable generalized normal homogeneous Riemannian manifolds with positive Euler characteristic, which are not normal homogeneous, consists exactly of all generalized flag manifolds Sp ( l ) / U ( 1 ) ⋅ Sp ( l − 1 ) = C P 2 l − 1 , l ⩾ 2 , supplied with invariant Riemannian metrics of positive sectional curvature with the pinching constants (the ratio of the minimal sectional curvature to the maximal one) in the open interval ( 1 / 16 , 1 / 4 ) . This implies very unusual geometric properties of the adjoint representation of Sp ( l ) , l ⩾ 2 . Some unsolved questions are suggested.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.difgeo.2011.04.032</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-2245
ispartof Differential geometry and its applications, 2011-08, Vol.29 (4), p.533-546
issn 0926-2245
1872-6984
language eng
recordid cdi_proquest_miscellaneous_896231124
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Classification
Clifford–Wolf homogeneous Riemannian manifolds
Clifford–Wolf translations
Constants
Curvature
G.o. spaces
Generalized normal homogeneous Riemannian manifolds
Geodesics
Homogeneous spaces
Homogeneous spaces of positive Euler characteristic
Invariants
Manifolds
Mathematical analysis
Normal homogeneous Riemannian manifolds
Orbits
δ-Homogeneous Riemannian manifolds
title Classification of generalized normal homogeneous Riemannian manifolds of positive Euler characteristic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20generalized%20normal%20homogeneous%20Riemannian%20manifolds%20of%20positive%20Euler%20characteristic&rft.jtitle=Differential%20geometry%20and%20its%20applications&rft.au=Berestovski%C4%AD,%20V.N.&rft.date=2011-08-01&rft.volume=29&rft.issue=4&rft.spage=533&rft.epage=546&rft.pages=533-546&rft.issn=0926-2245&rft.eissn=1872-6984&rft_id=info:doi/10.1016/j.difgeo.2011.04.032&rft_dat=%3Cproquest_cross%3E896231124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896231124&rft_id=info:pmid/&rft_els_id=S0926224511000714&rfr_iscdi=true