Superelastic electrodes using Ti–Ni shape memory alloys
Ni and Ti sulfides are formed on the surface of a Ti 50Ni 50 alloy by annealing the alloy at 873 K for 0.24–72 ks under the sulfur pressure of 160 kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are inve...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2008-04, Vol.178 (2), p.758-764 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 764 |
---|---|
container_issue | 2 |
container_start_page | 758 |
container_title | Journal of power sources |
container_volume | 178 |
creator | Kim, Han-Seong Kim, Joo-Suk Kim, Min-Gyun Cho, Kwon-Koo Nam, Tae-Hyun |
description | Ni and Ti sulfides are formed on the surface of a Ti
50Ni
50 alloy by annealing the alloy at 873
K for 0.24–72
ks under the sulfur pressure of 160
kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are investigated by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermal cycling tests under constant load and tensile tests. NiS
2 particles are formed first on the surface of the alloy, and then are grown and coalesced with increasing annealing time. When annealing time is longer than 1.2
ks, in addition to NiS
2, Ti
8.2S
11 sulfide is formed, and therefore the surface sulfide layers is consisted of NiS
2 and Ti
8.2S
11. A Ti
50Ni
50 alloy with the surface sulfide layers shows the shape memory effect and superelasticity clearly. A Ti
50Ni
50 alloy with the surface sulfide layers shows clear discharge behavior with an increase of annealing time. Multi-voltage plateaus of 1.89, 1.70 and 1.42
V are observed at a cell with electrode annealed for 1.2
ks and an additional plateau at 2.0
V appeared at cells of 3.6 and 10.8
ks. NiS
2 is not transformed into pure Ni and Li
2S during discharging process directly but is transformed by way of intermediate phases such as NiS and Ni
3S
2. |
doi_str_mv | 10.1016/j.jpowsour.2007.08.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896231006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775307015558</els_id><sourcerecordid>1777143514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-9fa37e83ba756266e9d48557688af95b0e6593d2aafd66263cfbfa0de41a10a83</originalsourceid><addsrcrecordid>eNqFkE1u1EAQhVuISAwDV0DeoLCxqXa7f7wLikiIFJFFknWrpl1OeuSZNl3joNlxB26Yk-BoAkuyKNXme-9JnxAfJFQSpPm8rtZj-slpylUNYCtwFYB6JRbSWVXWVuvXYgHKutJard6It8xrAJDSwkK019NImQbkXQwFDRR2OXXExcRxe1fcxMdfv7_Hgu9xpGJDm5T3BQ5D2vM7cdTjwPT--S_F7dnXm9Nv5eXV-cXpl8syNGB3ZdujsuTUCq02tTHUdo3T2hrnsG_1CsjoVnU1Yt-ZGVChX_UIHTUSJaBTS3F86B1z-jER7_wmcqBhwC2lib1rTa0kgJnJT_8lpbVWNkrPtxTmgIacmDP1fsxxg3nvJfgnq37t_1r1T1Y9OD9bnYMfnzeQAw59xm2I_C9dg2oabWDmTg4czWoeImXPIdI2UBfz7Nh3Kb409Qe9pZHl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777143514</pqid></control><display><type>article</type><title>Superelastic electrodes using Ti–Ni shape memory alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Han-Seong ; Kim, Joo-Suk ; Kim, Min-Gyun ; Cho, Kwon-Koo ; Nam, Tae-Hyun</creator><creatorcontrib>Kim, Han-Seong ; Kim, Joo-Suk ; Kim, Min-Gyun ; Cho, Kwon-Koo ; Nam, Tae-Hyun</creatorcontrib><description>Ni and Ti sulfides are formed on the surface of a Ti
50Ni
50 alloy by annealing the alloy at 873
K for 0.24–72
ks under the sulfur pressure of 160
kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are investigated by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermal cycling tests under constant load and tensile tests. NiS
2 particles are formed first on the surface of the alloy, and then are grown and coalesced with increasing annealing time. When annealing time is longer than 1.2
ks, in addition to NiS
2, Ti
8.2S
11 sulfide is formed, and therefore the surface sulfide layers is consisted of NiS
2 and Ti
8.2S
11. A Ti
50Ni
50 alloy with the surface sulfide layers shows the shape memory effect and superelasticity clearly. A Ti
50Ni
50 alloy with the surface sulfide layers shows clear discharge behavior with an increase of annealing time. Multi-voltage plateaus of 1.89, 1.70 and 1.42
V are observed at a cell with electrode annealed for 1.2
ks and an additional plateau at 2.0
V appeared at cells of 3.6 and 10.8
ks. NiS
2 is not transformed into pure Ni and Li
2S during discharging process directly but is transformed by way of intermediate phases such as NiS and Ni
3S
2.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2007.08.003</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Annealing ; Applied sciences ; Direct energy conversion and energy accumulation ; Discharge ; Discharge behavior ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Exact sciences and technology ; Martensitic transformations ; Nickel ; Secondary battery ; Shape memory alloys ; Sulfides ; Sulfides cathode ; Superelasticity ; Titanium base alloys ; Ti–Ni current collector</subject><ispartof>Journal of power sources, 2008-04, Vol.178 (2), p.758-764</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-9fa37e83ba756266e9d48557688af95b0e6593d2aafd66263cfbfa0de41a10a83</citedby><cites>FETCH-LOGICAL-c407t-9fa37e83ba756266e9d48557688af95b0e6593d2aafd66263cfbfa0de41a10a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2007.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20344560$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Han-Seong</creatorcontrib><creatorcontrib>Kim, Joo-Suk</creatorcontrib><creatorcontrib>Kim, Min-Gyun</creatorcontrib><creatorcontrib>Cho, Kwon-Koo</creatorcontrib><creatorcontrib>Nam, Tae-Hyun</creatorcontrib><title>Superelastic electrodes using Ti–Ni shape memory alloys</title><title>Journal of power sources</title><description>Ni and Ti sulfides are formed on the surface of a Ti
50Ni
50 alloy by annealing the alloy at 873
K for 0.24–72
ks under the sulfur pressure of 160
kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are investigated by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermal cycling tests under constant load and tensile tests. NiS
2 particles are formed first on the surface of the alloy, and then are grown and coalesced with increasing annealing time. When annealing time is longer than 1.2
ks, in addition to NiS
2, Ti
8.2S
11 sulfide is formed, and therefore the surface sulfide layers is consisted of NiS
2 and Ti
8.2S
11. A Ti
50Ni
50 alloy with the surface sulfide layers shows the shape memory effect and superelasticity clearly. A Ti
50Ni
50 alloy with the surface sulfide layers shows clear discharge behavior with an increase of annealing time. Multi-voltage plateaus of 1.89, 1.70 and 1.42
V are observed at a cell with electrode annealed for 1.2
ks and an additional plateau at 2.0
V appeared at cells of 3.6 and 10.8
ks. NiS
2 is not transformed into pure Ni and Li
2S during discharging process directly but is transformed by way of intermediate phases such as NiS and Ni
3S
2.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discharge</subject><subject>Discharge behavior</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Martensitic transformations</subject><subject>Nickel</subject><subject>Secondary battery</subject><subject>Shape memory alloys</subject><subject>Sulfides</subject><subject>Sulfides cathode</subject><subject>Superelasticity</subject><subject>Titanium base alloys</subject><subject>Ti–Ni current collector</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1u1EAQhVuISAwDV0DeoLCxqXa7f7wLikiIFJFFknWrpl1OeuSZNl3joNlxB26Yk-BoAkuyKNXme-9JnxAfJFQSpPm8rtZj-slpylUNYCtwFYB6JRbSWVXWVuvXYgHKutJard6It8xrAJDSwkK019NImQbkXQwFDRR2OXXExcRxe1fcxMdfv7_Hgu9xpGJDm5T3BQ5D2vM7cdTjwPT--S_F7dnXm9Nv5eXV-cXpl8syNGB3ZdujsuTUCq02tTHUdo3T2hrnsG_1CsjoVnU1Yt-ZGVChX_UIHTUSJaBTS3F86B1z-jER7_wmcqBhwC2lib1rTa0kgJnJT_8lpbVWNkrPtxTmgIacmDP1fsxxg3nvJfgnq37t_1r1T1Y9OD9bnYMfnzeQAw59xm2I_C9dg2oabWDmTg4czWoeImXPIdI2UBfz7Nh3Kb409Qe9pZHl</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Kim, Han-Seong</creator><creator>Kim, Joo-Suk</creator><creator>Kim, Min-Gyun</creator><creator>Cho, Kwon-Koo</creator><creator>Nam, Tae-Hyun</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20080401</creationdate><title>Superelastic electrodes using Ti–Ni shape memory alloys</title><author>Kim, Han-Seong ; Kim, Joo-Suk ; Kim, Min-Gyun ; Cho, Kwon-Koo ; Nam, Tae-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-9fa37e83ba756266e9d48557688af95b0e6593d2aafd66263cfbfa0de41a10a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discharge</topic><topic>Discharge behavior</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Martensitic transformations</topic><topic>Nickel</topic><topic>Secondary battery</topic><topic>Shape memory alloys</topic><topic>Sulfides</topic><topic>Sulfides cathode</topic><topic>Superelasticity</topic><topic>Titanium base alloys</topic><topic>Ti–Ni current collector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Han-Seong</creatorcontrib><creatorcontrib>Kim, Joo-Suk</creatorcontrib><creatorcontrib>Kim, Min-Gyun</creatorcontrib><creatorcontrib>Cho, Kwon-Koo</creatorcontrib><creatorcontrib>Nam, Tae-Hyun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Han-Seong</au><au>Kim, Joo-Suk</au><au>Kim, Min-Gyun</au><au>Cho, Kwon-Koo</au><au>Nam, Tae-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superelastic electrodes using Ti–Ni shape memory alloys</atitle><jtitle>Journal of power sources</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>178</volume><issue>2</issue><spage>758</spage><epage>764</epage><pages>758-764</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Ni and Ti sulfides are formed on the surface of a Ti
50Ni
50 alloy by annealing the alloy at 873
K for 0.24–72
ks under the sulfur pressure of 160
kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are investigated by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermal cycling tests under constant load and tensile tests. NiS
2 particles are formed first on the surface of the alloy, and then are grown and coalesced with increasing annealing time. When annealing time is longer than 1.2
ks, in addition to NiS
2, Ti
8.2S
11 sulfide is formed, and therefore the surface sulfide layers is consisted of NiS
2 and Ti
8.2S
11. A Ti
50Ni
50 alloy with the surface sulfide layers shows the shape memory effect and superelasticity clearly. A Ti
50Ni
50 alloy with the surface sulfide layers shows clear discharge behavior with an increase of annealing time. Multi-voltage plateaus of 1.89, 1.70 and 1.42
V are observed at a cell with electrode annealed for 1.2
ks and an additional plateau at 2.0
V appeared at cells of 3.6 and 10.8
ks. NiS
2 is not transformed into pure Ni and Li
2S during discharging process directly but is transformed by way of intermediate phases such as NiS and Ni
3S
2.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2007.08.003</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2008-04, Vol.178 (2), p.758-764 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_896231006 |
source | Elsevier ScienceDirect Journals |
subjects | Annealing Applied sciences Direct energy conversion and energy accumulation Discharge Discharge behavior Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrodes Exact sciences and technology Martensitic transformations Nickel Secondary battery Shape memory alloys Sulfides Sulfides cathode Superelasticity Titanium base alloys Ti–Ni current collector |
title | Superelastic electrodes using Ti–Ni shape memory alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superelastic%20electrodes%20using%20Ti%E2%80%93Ni%20shape%20memory%20alloys&rft.jtitle=Journal%20of%20power%20sources&rft.au=Kim,%20Han-Seong&rft.date=2008-04-01&rft.volume=178&rft.issue=2&rft.spage=758&rft.epage=764&rft.pages=758-764&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2007.08.003&rft_dat=%3Cproquest_cross%3E1777143514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777143514&rft_id=info:pmid/&rft_els_id=S0378775307015558&rfr_iscdi=true |