Superelastic electrodes using Ti–Ni shape memory alloys

Ni and Ti sulfides are formed on the surface of a Ti 50Ni 50 alloy by annealing the alloy at 873 K for 0.24–72 ks under the sulfur pressure of 160 kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2008-04, Vol.178 (2), p.758-764
Hauptverfasser: Kim, Han-Seong, Kim, Joo-Suk, Kim, Min-Gyun, Cho, Kwon-Koo, Nam, Tae-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 764
container_issue 2
container_start_page 758
container_title Journal of power sources
container_volume 178
creator Kim, Han-Seong
Kim, Joo-Suk
Kim, Min-Gyun
Cho, Kwon-Koo
Nam, Tae-Hyun
description Ni and Ti sulfides are formed on the surface of a Ti 50Ni 50 alloy by annealing the alloy at 873 K for 0.24–72 ks under the sulfur pressure of 160 kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are investigated by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermal cycling tests under constant load and tensile tests. NiS 2 particles are formed first on the surface of the alloy, and then are grown and coalesced with increasing annealing time. When annealing time is longer than 1.2 ks, in addition to NiS 2, Ti 8.2S 11 sulfide is formed, and therefore the surface sulfide layers is consisted of NiS 2 and Ti 8.2S 11. A Ti 50Ni 50 alloy with the surface sulfide layers shows the shape memory effect and superelasticity clearly. A Ti 50Ni 50 alloy with the surface sulfide layers shows clear discharge behavior with an increase of annealing time. Multi-voltage plateaus of 1.89, 1.70 and 1.42 V are observed at a cell with electrode annealed for 1.2 ks and an additional plateau at 2.0 V appeared at cells of 3.6 and 10.8 ks. NiS 2 is not transformed into pure Ni and Li 2S during discharging process directly but is transformed by way of intermediate phases such as NiS and Ni 3S 2.
doi_str_mv 10.1016/j.jpowsour.2007.08.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896231006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775307015558</els_id><sourcerecordid>1777143514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-9fa37e83ba756266e9d48557688af95b0e6593d2aafd66263cfbfa0de41a10a83</originalsourceid><addsrcrecordid>eNqFkE1u1EAQhVuISAwDV0DeoLCxqXa7f7wLikiIFJFFknWrpl1OeuSZNl3joNlxB26Yk-BoAkuyKNXme-9JnxAfJFQSpPm8rtZj-slpylUNYCtwFYB6JRbSWVXWVuvXYgHKutJard6It8xrAJDSwkK019NImQbkXQwFDRR2OXXExcRxe1fcxMdfv7_Hgu9xpGJDm5T3BQ5D2vM7cdTjwPT--S_F7dnXm9Nv5eXV-cXpl8syNGB3ZdujsuTUCq02tTHUdo3T2hrnsG_1CsjoVnU1Yt-ZGVChX_UIHTUSJaBTS3F86B1z-jER7_wmcqBhwC2lib1rTa0kgJnJT_8lpbVWNkrPtxTmgIacmDP1fsxxg3nvJfgnq37t_1r1T1Y9OD9bnYMfnzeQAw59xm2I_C9dg2oabWDmTg4czWoeImXPIdI2UBfz7Nh3Kb409Qe9pZHl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777143514</pqid></control><display><type>article</type><title>Superelastic electrodes using Ti–Ni shape memory alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Han-Seong ; Kim, Joo-Suk ; Kim, Min-Gyun ; Cho, Kwon-Koo ; Nam, Tae-Hyun</creator><creatorcontrib>Kim, Han-Seong ; Kim, Joo-Suk ; Kim, Min-Gyun ; Cho, Kwon-Koo ; Nam, Tae-Hyun</creatorcontrib><description>Ni and Ti sulfides are formed on the surface of a Ti 50Ni 50 alloy by annealing the alloy at 873 K for 0.24–72 ks under the sulfur pressure of 160 kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are investigated by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermal cycling tests under constant load and tensile tests. NiS 2 particles are formed first on the surface of the alloy, and then are grown and coalesced with increasing annealing time. When annealing time is longer than 1.2 ks, in addition to NiS 2, Ti 8.2S 11 sulfide is formed, and therefore the surface sulfide layers is consisted of NiS 2 and Ti 8.2S 11. A Ti 50Ni 50 alloy with the surface sulfide layers shows the shape memory effect and superelasticity clearly. A Ti 50Ni 50 alloy with the surface sulfide layers shows clear discharge behavior with an increase of annealing time. Multi-voltage plateaus of 1.89, 1.70 and 1.42 V are observed at a cell with electrode annealed for 1.2 ks and an additional plateau at 2.0 V appeared at cells of 3.6 and 10.8 ks. NiS 2 is not transformed into pure Ni and Li 2S during discharging process directly but is transformed by way of intermediate phases such as NiS and Ni 3S 2.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2007.08.003</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Annealing ; Applied sciences ; Direct energy conversion and energy accumulation ; Discharge ; Discharge behavior ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Exact sciences and technology ; Martensitic transformations ; Nickel ; Secondary battery ; Shape memory alloys ; Sulfides ; Sulfides cathode ; Superelasticity ; Titanium base alloys ; Ti–Ni current collector</subject><ispartof>Journal of power sources, 2008-04, Vol.178 (2), p.758-764</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-9fa37e83ba756266e9d48557688af95b0e6593d2aafd66263cfbfa0de41a10a83</citedby><cites>FETCH-LOGICAL-c407t-9fa37e83ba756266e9d48557688af95b0e6593d2aafd66263cfbfa0de41a10a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2007.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20344560$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Han-Seong</creatorcontrib><creatorcontrib>Kim, Joo-Suk</creatorcontrib><creatorcontrib>Kim, Min-Gyun</creatorcontrib><creatorcontrib>Cho, Kwon-Koo</creatorcontrib><creatorcontrib>Nam, Tae-Hyun</creatorcontrib><title>Superelastic electrodes using Ti–Ni shape memory alloys</title><title>Journal of power sources</title><description>Ni and Ti sulfides are formed on the surface of a Ti 50Ni 50 alloy by annealing the alloy at 873 K for 0.24–72 ks under the sulfur pressure of 160 kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are investigated by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermal cycling tests under constant load and tensile tests. NiS 2 particles are formed first on the surface of the alloy, and then are grown and coalesced with increasing annealing time. When annealing time is longer than 1.2 ks, in addition to NiS 2, Ti 8.2S 11 sulfide is formed, and therefore the surface sulfide layers is consisted of NiS 2 and Ti 8.2S 11. A Ti 50Ni 50 alloy with the surface sulfide layers shows the shape memory effect and superelasticity clearly. A Ti 50Ni 50 alloy with the surface sulfide layers shows clear discharge behavior with an increase of annealing time. Multi-voltage plateaus of 1.89, 1.70 and 1.42 V are observed at a cell with electrode annealed for 1.2 ks and an additional plateau at 2.0 V appeared at cells of 3.6 and 10.8 ks. NiS 2 is not transformed into pure Ni and Li 2S during discharging process directly but is transformed by way of intermediate phases such as NiS and Ni 3S 2.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discharge</subject><subject>Discharge behavior</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Martensitic transformations</subject><subject>Nickel</subject><subject>Secondary battery</subject><subject>Shape memory alloys</subject><subject>Sulfides</subject><subject>Sulfides cathode</subject><subject>Superelasticity</subject><subject>Titanium base alloys</subject><subject>Ti–Ni current collector</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1u1EAQhVuISAwDV0DeoLCxqXa7f7wLikiIFJFFknWrpl1OeuSZNl3joNlxB26Yk-BoAkuyKNXme-9JnxAfJFQSpPm8rtZj-slpylUNYCtwFYB6JRbSWVXWVuvXYgHKutJard6It8xrAJDSwkK019NImQbkXQwFDRR2OXXExcRxe1fcxMdfv7_Hgu9xpGJDm5T3BQ5D2vM7cdTjwPT--S_F7dnXm9Nv5eXV-cXpl8syNGB3ZdujsuTUCq02tTHUdo3T2hrnsG_1CsjoVnU1Yt-ZGVChX_UIHTUSJaBTS3F86B1z-jER7_wmcqBhwC2lib1rTa0kgJnJT_8lpbVWNkrPtxTmgIacmDP1fsxxg3nvJfgnq37t_1r1T1Y9OD9bnYMfnzeQAw59xm2I_C9dg2oabWDmTg4czWoeImXPIdI2UBfz7Nh3Kb409Qe9pZHl</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Kim, Han-Seong</creator><creator>Kim, Joo-Suk</creator><creator>Kim, Min-Gyun</creator><creator>Cho, Kwon-Koo</creator><creator>Nam, Tae-Hyun</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20080401</creationdate><title>Superelastic electrodes using Ti–Ni shape memory alloys</title><author>Kim, Han-Seong ; Kim, Joo-Suk ; Kim, Min-Gyun ; Cho, Kwon-Koo ; Nam, Tae-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-9fa37e83ba756266e9d48557688af95b0e6593d2aafd66263cfbfa0de41a10a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discharge</topic><topic>Discharge behavior</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Martensitic transformations</topic><topic>Nickel</topic><topic>Secondary battery</topic><topic>Shape memory alloys</topic><topic>Sulfides</topic><topic>Sulfides cathode</topic><topic>Superelasticity</topic><topic>Titanium base alloys</topic><topic>Ti–Ni current collector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Han-Seong</creatorcontrib><creatorcontrib>Kim, Joo-Suk</creatorcontrib><creatorcontrib>Kim, Min-Gyun</creatorcontrib><creatorcontrib>Cho, Kwon-Koo</creatorcontrib><creatorcontrib>Nam, Tae-Hyun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Han-Seong</au><au>Kim, Joo-Suk</au><au>Kim, Min-Gyun</au><au>Cho, Kwon-Koo</au><au>Nam, Tae-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superelastic electrodes using Ti–Ni shape memory alloys</atitle><jtitle>Journal of power sources</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>178</volume><issue>2</issue><spage>758</spage><epage>764</epage><pages>758-764</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Ni and Ti sulfides are formed on the surface of a Ti 50Ni 50 alloy by annealing the alloy at 873 K for 0.24–72 ks under the sulfur pressure of 160 kPa, and then microstructures, martensitic transformation behavior, shape memory characteristics, superelasticity and electrochemical properties are investigated by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermal cycling tests under constant load and tensile tests. NiS 2 particles are formed first on the surface of the alloy, and then are grown and coalesced with increasing annealing time. When annealing time is longer than 1.2 ks, in addition to NiS 2, Ti 8.2S 11 sulfide is formed, and therefore the surface sulfide layers is consisted of NiS 2 and Ti 8.2S 11. A Ti 50Ni 50 alloy with the surface sulfide layers shows the shape memory effect and superelasticity clearly. A Ti 50Ni 50 alloy with the surface sulfide layers shows clear discharge behavior with an increase of annealing time. Multi-voltage plateaus of 1.89, 1.70 and 1.42 V are observed at a cell with electrode annealed for 1.2 ks and an additional plateau at 2.0 V appeared at cells of 3.6 and 10.8 ks. NiS 2 is not transformed into pure Ni and Li 2S during discharging process directly but is transformed by way of intermediate phases such as NiS and Ni 3S 2.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2007.08.003</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2008-04, Vol.178 (2), p.758-764
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_896231006
source Elsevier ScienceDirect Journals
subjects Annealing
Applied sciences
Direct energy conversion and energy accumulation
Discharge
Discharge behavior
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Exact sciences and technology
Martensitic transformations
Nickel
Secondary battery
Shape memory alloys
Sulfides
Sulfides cathode
Superelasticity
Titanium base alloys
Ti–Ni current collector
title Superelastic electrodes using Ti–Ni shape memory alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superelastic%20electrodes%20using%20Ti%E2%80%93Ni%20shape%20memory%20alloys&rft.jtitle=Journal%20of%20power%20sources&rft.au=Kim,%20Han-Seong&rft.date=2008-04-01&rft.volume=178&rft.issue=2&rft.spage=758&rft.epage=764&rft.pages=758-764&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2007.08.003&rft_dat=%3Cproquest_cross%3E1777143514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777143514&rft_id=info:pmid/&rft_els_id=S0378775307015558&rfr_iscdi=true