Surface structural disordering in graphite upon lithium intercalation/deintercalation
We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li x C (0 ≤ x < 0.16) is re...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2010-06, Vol.195 (11), p.3655-3660 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3660 |
---|---|
container_issue | 11 |
container_start_page | 3655 |
container_title | Journal of power sources |
container_volume | 195 |
creator | Sethuraman, Vijay A. Hardwick, Laurence J. Srinivasan, Venkat Kostecki, Robert |
description | We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li
x
C (0
≤
x
<
0.16) is responsible for most of the structural damage observed at the graphite surface. The extent of surface structural disorder in graphite is significantly reduced for the anodes that were cycled at potentials where stage-1 and stage-2 compounds (
x
>
0.33) are present. Electrochemical impedance spectra show larger interfacial impedance for the electrodes that were fully delithiated during cycling as compared to electrodes that were cycled at lower potentials (
U
<
0.15
V
vs. Li/Li
+). Steep Li
+ surface-bulk concentration gradients at the surface of graphite during early stages of intercalation processes, and the inherent increase of the Li
x
C
d-spacing tend to induce local stresses at the edges of graphene layers, and lead to the breakage of C–C bonds. The exposed graphite edge sites react with the electrolyte to (re)form the SEI layer, which leads to gradual degradation of the graphite anode, and causes reversible capacity loss in a lithium-ion battery. |
doi_str_mv | 10.1016/j.jpowsour.2009.12.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896228085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309022964</els_id><sourcerecordid>1777137597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-b8d738c356557de83f72637d6132d619b46e8694d96298ea3eae2d3ea702bbda3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJoJuPv1B8Ke3Fjj4sj3xLCWkSCOSQ7FlopXGixWs5ktzSf1-F3RR6aS8zDPO8M_AQ8onRhlHWXWyb7Rx-prDEhlPaN4w3VLQfyIopEDUHKY_IigpQNYAUH8lJSltKKWNAV2T9uMTBWKxSjovNSzRj5XwK0WH003Plp-o5mvnFZ6yWOUzV6POLX3ZlkTFaM5rsw3Th8K_5jBwPZkx4fuinZP39-unqtr5_uLm7-nZfW8lZrjfKgVBWyE5KcKjEALwT4DomeCn9pu1QdX3r-o73Co1Ag9yVCpRvNs6IU_Jlf3eO4XXBlPXOJ4vjaCYMS9KqBLmiShby6z9JBgBMgOyhoN0etTGkFHHQc_Q7E39pRvWbcb3V78b1m3HNuC7GS_Dz4YdJxcQQzWR9-pPmvIW271XhLvccFjU_PEadrMfJovMRbdYu-P-9-g3sMZyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777137597</pqid></control><display><type>article</type><title>Surface structural disordering in graphite upon lithium intercalation/deintercalation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sethuraman, Vijay A. ; Hardwick, Laurence J. ; Srinivasan, Venkat ; Kostecki, Robert</creator><creatorcontrib>Sethuraman, Vijay A. ; Hardwick, Laurence J. ; Srinivasan, Venkat ; Kostecki, Robert</creatorcontrib><description>We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li
x
C (0
≤
x
<
0.16) is responsible for most of the structural damage observed at the graphite surface. The extent of surface structural disorder in graphite is significantly reduced for the anodes that were cycled at potentials where stage-1 and stage-2 compounds (
x
>
0.33) are present. Electrochemical impedance spectra show larger interfacial impedance for the electrodes that were fully delithiated during cycling as compared to electrodes that were cycled at lower potentials (
U
<
0.15
V
vs. Li/Li
+). Steep Li
+ surface-bulk concentration gradients at the surface of graphite during early stages of intercalation processes, and the inherent increase of the Li
x
C
d-spacing tend to induce local stresses at the edges of graphene layers, and lead to the breakage of C–C bonds. The exposed graphite edge sites react with the electrolyte to (re)form the SEI layer, which leads to gradual degradation of the graphite anode, and causes reversible capacity loss in a lithium-ion battery.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.12.034</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodes ; Applied sciences ; Capacity fade ; Cycles ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Exact sciences and technology ; Graphene ; Graphite ; Graphite anode ; Intercalation ; Lithium ; Lithium-ion battery ; Raman spectroscopy ; Structural damage ; Structural disordering</subject><ispartof>Journal of power sources, 2010-06, Vol.195 (11), p.3655-3660</ispartof><rights>2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-b8d738c356557de83f72637d6132d619b46e8694d96298ea3eae2d3ea702bbda3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2009.12.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22474998$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sethuraman, Vijay A.</creatorcontrib><creatorcontrib>Hardwick, Laurence J.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><title>Surface structural disordering in graphite upon lithium intercalation/deintercalation</title><title>Journal of power sources</title><description>We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li
x
C (0
≤
x
<
0.16) is responsible for most of the structural damage observed at the graphite surface. The extent of surface structural disorder in graphite is significantly reduced for the anodes that were cycled at potentials where stage-1 and stage-2 compounds (
x
>
0.33) are present. Electrochemical impedance spectra show larger interfacial impedance for the electrodes that were fully delithiated during cycling as compared to electrodes that were cycled at lower potentials (
U
<
0.15
V
vs. Li/Li
+). Steep Li
+ surface-bulk concentration gradients at the surface of graphite during early stages of intercalation processes, and the inherent increase of the Li
x
C
d-spacing tend to induce local stresses at the edges of graphene layers, and lead to the breakage of C–C bonds. The exposed graphite edge sites react with the electrolyte to (re)form the SEI layer, which leads to gradual degradation of the graphite anode, and causes reversible capacity loss in a lithium-ion battery.</description><subject>Anodes</subject><subject>Applied sciences</subject><subject>Capacity fade</subject><subject>Cycles</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Graphite anode</subject><subject>Intercalation</subject><subject>Lithium</subject><subject>Lithium-ion battery</subject><subject>Raman spectroscopy</subject><subject>Structural damage</subject><subject>Structural disordering</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVJoJuPv1B8Ke3Fjj4sj3xLCWkSCOSQ7FlopXGixWs5ktzSf1-F3RR6aS8zDPO8M_AQ8onRhlHWXWyb7Rx-prDEhlPaN4w3VLQfyIopEDUHKY_IigpQNYAUH8lJSltKKWNAV2T9uMTBWKxSjovNSzRj5XwK0WH003Plp-o5mvnFZ6yWOUzV6POLX3ZlkTFaM5rsw3Th8K_5jBwPZkx4fuinZP39-unqtr5_uLm7-nZfW8lZrjfKgVBWyE5KcKjEALwT4DomeCn9pu1QdX3r-o73Co1Ag9yVCpRvNs6IU_Jlf3eO4XXBlPXOJ4vjaCYMS9KqBLmiShby6z9JBgBMgOyhoN0etTGkFHHQc_Q7E39pRvWbcb3V78b1m3HNuC7GS_Dz4YdJxcQQzWR9-pPmvIW271XhLvccFjU_PEadrMfJovMRbdYu-P-9-g3sMZyE</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Sethuraman, Vijay A.</creator><creator>Hardwick, Laurence J.</creator><creator>Srinivasan, Venkat</creator><creator>Kostecki, Robert</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20100601</creationdate><title>Surface structural disordering in graphite upon lithium intercalation/deintercalation</title><author>Sethuraman, Vijay A. ; Hardwick, Laurence J. ; Srinivasan, Venkat ; Kostecki, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-b8d738c356557de83f72637d6132d619b46e8694d96298ea3eae2d3ea702bbda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anodes</topic><topic>Applied sciences</topic><topic>Capacity fade</topic><topic>Cycles</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Graphite anode</topic><topic>Intercalation</topic><topic>Lithium</topic><topic>Lithium-ion battery</topic><topic>Raman spectroscopy</topic><topic>Structural damage</topic><topic>Structural disordering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethuraman, Vijay A.</creatorcontrib><creatorcontrib>Hardwick, Laurence J.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethuraman, Vijay A.</au><au>Hardwick, Laurence J.</au><au>Srinivasan, Venkat</au><au>Kostecki, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface structural disordering in graphite upon lithium intercalation/deintercalation</atitle><jtitle>Journal of power sources</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>195</volume><issue>11</issue><spage>3655</spage><epage>3660</epage><pages>3655-3660</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li
x
C (0
≤
x
<
0.16) is responsible for most of the structural damage observed at the graphite surface. The extent of surface structural disorder in graphite is significantly reduced for the anodes that were cycled at potentials where stage-1 and stage-2 compounds (
x
>
0.33) are present. Electrochemical impedance spectra show larger interfacial impedance for the electrodes that were fully delithiated during cycling as compared to electrodes that were cycled at lower potentials (
U
<
0.15
V
vs. Li/Li
+). Steep Li
+ surface-bulk concentration gradients at the surface of graphite during early stages of intercalation processes, and the inherent increase of the Li
x
C
d-spacing tend to induce local stresses at the edges of graphene layers, and lead to the breakage of C–C bonds. The exposed graphite edge sites react with the electrolyte to (re)form the SEI layer, which leads to gradual degradation of the graphite anode, and causes reversible capacity loss in a lithium-ion battery.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.12.034</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2010-06, Vol.195 (11), p.3655-3660 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_896228085 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anodes Applied sciences Capacity fade Cycles Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrodes Exact sciences and technology Graphene Graphite Graphite anode Intercalation Lithium Lithium-ion battery Raman spectroscopy Structural damage Structural disordering |
title | Surface structural disordering in graphite upon lithium intercalation/deintercalation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20structural%20disordering%20in%20graphite%20upon%20lithium%20intercalation/deintercalation&rft.jtitle=Journal%20of%20power%20sources&rft.au=Sethuraman,%20Vijay%20A.&rft.date=2010-06-01&rft.volume=195&rft.issue=11&rft.spage=3655&rft.epage=3660&rft.pages=3655-3660&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.12.034&rft_dat=%3Cproquest_cross%3E1777137597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777137597&rft_id=info:pmid/&rft_els_id=S0378775309022964&rfr_iscdi=true |