Surface structural disordering in graphite upon lithium intercalation/deintercalation

We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li x C (0 ≤ x < 0.16) is re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2010-06, Vol.195 (11), p.3655-3660
Hauptverfasser: Sethuraman, Vijay A., Hardwick, Laurence J., Srinivasan, Venkat, Kostecki, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3660
container_issue 11
container_start_page 3655
container_title Journal of power sources
container_volume 195
creator Sethuraman, Vijay A.
Hardwick, Laurence J.
Srinivasan, Venkat
Kostecki, Robert
description We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li x C (0 ≤ x < 0.16) is responsible for most of the structural damage observed at the graphite surface. The extent of surface structural disorder in graphite is significantly reduced for the anodes that were cycled at potentials where stage-1 and stage-2 compounds ( x > 0.33) are present. Electrochemical impedance spectra show larger interfacial impedance for the electrodes that were fully delithiated during cycling as compared to electrodes that were cycled at lower potentials ( U < 0.15 V vs. Li/Li +). Steep Li + surface-bulk concentration gradients at the surface of graphite during early stages of intercalation processes, and the inherent increase of the Li x C d-spacing tend to induce local stresses at the edges of graphene layers, and lead to the breakage of C–C bonds. The exposed graphite edge sites react with the electrolyte to (re)form the SEI layer, which leads to gradual degradation of the graphite anode, and causes reversible capacity loss in a lithium-ion battery.
doi_str_mv 10.1016/j.jpowsour.2009.12.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896228085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309022964</els_id><sourcerecordid>1777137597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-b8d738c356557de83f72637d6132d619b46e8694d96298ea3eae2d3ea702bbda3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJoJuPv1B8Ke3Fjj4sj3xLCWkSCOSQ7FlopXGixWs5ktzSf1-F3RR6aS8zDPO8M_AQ8onRhlHWXWyb7Rx-prDEhlPaN4w3VLQfyIopEDUHKY_IigpQNYAUH8lJSltKKWNAV2T9uMTBWKxSjovNSzRj5XwK0WH003Plp-o5mvnFZ6yWOUzV6POLX3ZlkTFaM5rsw3Th8K_5jBwPZkx4fuinZP39-unqtr5_uLm7-nZfW8lZrjfKgVBWyE5KcKjEALwT4DomeCn9pu1QdX3r-o73Co1Ag9yVCpRvNs6IU_Jlf3eO4XXBlPXOJ4vjaCYMS9KqBLmiShby6z9JBgBMgOyhoN0etTGkFHHQc_Q7E39pRvWbcb3V78b1m3HNuC7GS_Dz4YdJxcQQzWR9-pPmvIW271XhLvccFjU_PEadrMfJovMRbdYu-P-9-g3sMZyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777137597</pqid></control><display><type>article</type><title>Surface structural disordering in graphite upon lithium intercalation/deintercalation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sethuraman, Vijay A. ; Hardwick, Laurence J. ; Srinivasan, Venkat ; Kostecki, Robert</creator><creatorcontrib>Sethuraman, Vijay A. ; Hardwick, Laurence J. ; Srinivasan, Venkat ; Kostecki, Robert</creatorcontrib><description>We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li x C (0 ≤ x &lt; 0.16) is responsible for most of the structural damage observed at the graphite surface. The extent of surface structural disorder in graphite is significantly reduced for the anodes that were cycled at potentials where stage-1 and stage-2 compounds ( x &gt; 0.33) are present. Electrochemical impedance spectra show larger interfacial impedance for the electrodes that were fully delithiated during cycling as compared to electrodes that were cycled at lower potentials ( U &lt; 0.15 V vs. Li/Li +). Steep Li + surface-bulk concentration gradients at the surface of graphite during early stages of intercalation processes, and the inherent increase of the Li x C d-spacing tend to induce local stresses at the edges of graphene layers, and lead to the breakage of C–C bonds. The exposed graphite edge sites react with the electrolyte to (re)form the SEI layer, which leads to gradual degradation of the graphite anode, and causes reversible capacity loss in a lithium-ion battery.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.12.034</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodes ; Applied sciences ; Capacity fade ; Cycles ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Exact sciences and technology ; Graphene ; Graphite ; Graphite anode ; Intercalation ; Lithium ; Lithium-ion battery ; Raman spectroscopy ; Structural damage ; Structural disordering</subject><ispartof>Journal of power sources, 2010-06, Vol.195 (11), p.3655-3660</ispartof><rights>2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-b8d738c356557de83f72637d6132d619b46e8694d96298ea3eae2d3ea702bbda3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2009.12.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22474998$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sethuraman, Vijay A.</creatorcontrib><creatorcontrib>Hardwick, Laurence J.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><title>Surface structural disordering in graphite upon lithium intercalation/deintercalation</title><title>Journal of power sources</title><description>We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li x C (0 ≤ x &lt; 0.16) is responsible for most of the structural damage observed at the graphite surface. The extent of surface structural disorder in graphite is significantly reduced for the anodes that were cycled at potentials where stage-1 and stage-2 compounds ( x &gt; 0.33) are present. Electrochemical impedance spectra show larger interfacial impedance for the electrodes that were fully delithiated during cycling as compared to electrodes that were cycled at lower potentials ( U &lt; 0.15 V vs. Li/Li +). Steep Li + surface-bulk concentration gradients at the surface of graphite during early stages of intercalation processes, and the inherent increase of the Li x C d-spacing tend to induce local stresses at the edges of graphene layers, and lead to the breakage of C–C bonds. The exposed graphite edge sites react with the electrolyte to (re)form the SEI layer, which leads to gradual degradation of the graphite anode, and causes reversible capacity loss in a lithium-ion battery.</description><subject>Anodes</subject><subject>Applied sciences</subject><subject>Capacity fade</subject><subject>Cycles</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Graphite anode</subject><subject>Intercalation</subject><subject>Lithium</subject><subject>Lithium-ion battery</subject><subject>Raman spectroscopy</subject><subject>Structural damage</subject><subject>Structural disordering</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVJoJuPv1B8Ke3Fjj4sj3xLCWkSCOSQ7FlopXGixWs5ktzSf1-F3RR6aS8zDPO8M_AQ8onRhlHWXWyb7Rx-prDEhlPaN4w3VLQfyIopEDUHKY_IigpQNYAUH8lJSltKKWNAV2T9uMTBWKxSjovNSzRj5XwK0WH003Plp-o5mvnFZ6yWOUzV6POLX3ZlkTFaM5rsw3Th8K_5jBwPZkx4fuinZP39-unqtr5_uLm7-nZfW8lZrjfKgVBWyE5KcKjEALwT4DomeCn9pu1QdX3r-o73Co1Ag9yVCpRvNs6IU_Jlf3eO4XXBlPXOJ4vjaCYMS9KqBLmiShby6z9JBgBMgOyhoN0etTGkFHHQc_Q7E39pRvWbcb3V78b1m3HNuC7GS_Dz4YdJxcQQzWR9-pPmvIW271XhLvccFjU_PEadrMfJovMRbdYu-P-9-g3sMZyE</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Sethuraman, Vijay A.</creator><creator>Hardwick, Laurence J.</creator><creator>Srinivasan, Venkat</creator><creator>Kostecki, Robert</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20100601</creationdate><title>Surface structural disordering in graphite upon lithium intercalation/deintercalation</title><author>Sethuraman, Vijay A. ; Hardwick, Laurence J. ; Srinivasan, Venkat ; Kostecki, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-b8d738c356557de83f72637d6132d619b46e8694d96298ea3eae2d3ea702bbda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anodes</topic><topic>Applied sciences</topic><topic>Capacity fade</topic><topic>Cycles</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Graphite anode</topic><topic>Intercalation</topic><topic>Lithium</topic><topic>Lithium-ion battery</topic><topic>Raman spectroscopy</topic><topic>Structural damage</topic><topic>Structural disordering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethuraman, Vijay A.</creatorcontrib><creatorcontrib>Hardwick, Laurence J.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethuraman, Vijay A.</au><au>Hardwick, Laurence J.</au><au>Srinivasan, Venkat</au><au>Kostecki, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface structural disordering in graphite upon lithium intercalation/deintercalation</atitle><jtitle>Journal of power sources</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>195</volume><issue>11</issue><spage>3655</spage><epage>3660</epage><pages>3655-3660</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>We report on the origin of the surface structural disordering in graphite anodes induced by lithium intercalation and deintercalation processes. Average Raman spectra of graphitic anodes reveal that cycling at potentials that correspond to low lithium concentrations in Li x C (0 ≤ x &lt; 0.16) is responsible for most of the structural damage observed at the graphite surface. The extent of surface structural disorder in graphite is significantly reduced for the anodes that were cycled at potentials where stage-1 and stage-2 compounds ( x &gt; 0.33) are present. Electrochemical impedance spectra show larger interfacial impedance for the electrodes that were fully delithiated during cycling as compared to electrodes that were cycled at lower potentials ( U &lt; 0.15 V vs. Li/Li +). Steep Li + surface-bulk concentration gradients at the surface of graphite during early stages of intercalation processes, and the inherent increase of the Li x C d-spacing tend to induce local stresses at the edges of graphene layers, and lead to the breakage of C–C bonds. The exposed graphite edge sites react with the electrolyte to (re)form the SEI layer, which leads to gradual degradation of the graphite anode, and causes reversible capacity loss in a lithium-ion battery.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.12.034</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2010-06, Vol.195 (11), p.3655-3660
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_896228085
source Access via ScienceDirect (Elsevier)
subjects Anodes
Applied sciences
Capacity fade
Cycles
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Exact sciences and technology
Graphene
Graphite
Graphite anode
Intercalation
Lithium
Lithium-ion battery
Raman spectroscopy
Structural damage
Structural disordering
title Surface structural disordering in graphite upon lithium intercalation/deintercalation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20structural%20disordering%20in%20graphite%20upon%20lithium%20intercalation/deintercalation&rft.jtitle=Journal%20of%20power%20sources&rft.au=Sethuraman,%20Vijay%20A.&rft.date=2010-06-01&rft.volume=195&rft.issue=11&rft.spage=3655&rft.epage=3660&rft.pages=3655-3660&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.12.034&rft_dat=%3Cproquest_cross%3E1777137597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777137597&rft_id=info:pmid/&rft_els_id=S0378775309022964&rfr_iscdi=true