Nonsystematic turbo codes

In this paper, we introduce the concept of nonsystematic turbo codes and compare them with classical systematic turbo codes. Nonsystematic turbo codes can achieve lower error floors than systematic turbo codes because of their superior effective free distance properties. Moreover, they can achieve c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2005-11, Vol.53 (11), p.1841-1849
Hauptverfasser: Banerjee, A., Vatta, F., Scanavino, B., Costello, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1849
container_issue 11
container_start_page 1841
container_title IEEE transactions on communications
container_volume 53
creator Banerjee, A.
Vatta, F.
Scanavino, B.
Costello, D.J.
description In this paper, we introduce the concept of nonsystematic turbo codes and compare them with classical systematic turbo codes. Nonsystematic turbo codes can achieve lower error floors than systematic turbo codes because of their superior effective free distance properties. Moreover, they can achieve comparable performance in the waterfall region if the nonsystematic constituent encoder has a low-weight feedforward inverse. A uniform interleaver analysis is used to show that rate R=1/3 turbo codes using nonsystematic constituent encoders have larger effective free distances than when systematic constituent encoders are used. Also, mutual information-based transfer characteristics and extrinsic information transfer charts are used to show that rate R=1/3 turbo codes with nonsystematic constituent encoders having low-weight feedforward inverses achieve convergence thresholds comparable to those achieved with systematic constituent encoders. Catastrophic encoders, which do not possess a feedforward inverse, are shown to be capable of achieving low convergence thresholds by doping the code with a small fraction of systematic bits. Finally, we give tables of good nonsystematic turbo codes and present simulation results comparing the performance of systematic and nonsystematic turbo codes.
doi_str_mv 10.1109/TCOMM.2005.858672
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896226993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1532480</ieee_id><sourcerecordid>896226993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-40f8ff3c9a3cf7f9505b92594f998202a204088c5f9d12f3f8a2ac6b3a6613a13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_oHgpgnraOvlOjlL8gtZe6jmkaQJbtrs12T3035u6hYIHT3OYZ96ZeRAaYZhgDPppOV3M5xMCwCeKKyHJGRpgzlUBistzNADQUAgp1SW6SmkDAAwoHaDRZ1OnfWr91ralG7ddXDVj16x9ukYXwVbJ3xzrEH29viyn78Vs8fYxfZ4VjireFgyCCoE6bakLMmgOfKUJ1yxorQgQS_ImpRwPeo1JoEFZYp1YUSsEphbTIXrsc3ex-e58as22TM5Xla190yWjtCBEaE0z-fAvSRRQIqjI4N0fcNN0sc5fmKyGUck0yxDuIReblKIPZhfLrY17g8EcnJpfp-bg1PRO88z9MdgmZ6sQbe3KdBqURAKmh-zbniu996c2p4TlG38A8z58nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867437494</pqid></control><display><type>article</type><title>Nonsystematic turbo codes</title><source>IEEE Electronic Library (IEL)</source><creator>Banerjee, A. ; Vatta, F. ; Scanavino, B. ; Costello, D.J.</creator><creatorcontrib>Banerjee, A. ; Vatta, F. ; Scanavino, B. ; Costello, D.J.</creatorcontrib><description>In this paper, we introduce the concept of nonsystematic turbo codes and compare them with classical systematic turbo codes. Nonsystematic turbo codes can achieve lower error floors than systematic turbo codes because of their superior effective free distance properties. Moreover, they can achieve comparable performance in the waterfall region if the nonsystematic constituent encoder has a low-weight feedforward inverse. A uniform interleaver analysis is used to show that rate R=1/3 turbo codes using nonsystematic constituent encoders have larger effective free distances than when systematic constituent encoders are used. Also, mutual information-based transfer characteristics and extrinsic information transfer charts are used to show that rate R=1/3 turbo codes with nonsystematic constituent encoders having low-weight feedforward inverses achieve convergence thresholds comparable to those achieved with systematic constituent encoders. Catastrophic encoders, which do not possess a feedforward inverse, are shown to be capable of achieving low convergence thresholds by doping the code with a small fraction of systematic bits. Finally, we give tables of good nonsystematic turbo codes and present simulation results comparing the performance of systematic and nonsystematic turbo codes.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2005.858672</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bit error rate ; Coders ; Codes ; Coding, codes ; Constituents ; Convergence ; Convolution ; Convolutional codes ; Convolutional encoder feedforward inverses ; Doping ; effective free distance ; Encoders ; Exact sciences and technology ; Feedback ; Feedforward ; Information, signal and communications theory ; Inverse ; Iterative decoding ; iterative decoding convergence thresholds ; Modulation coding ; nonsystematic turbo codes ; Signal and communications theory ; Signal to noise ratio ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Thresholds ; Transmission and modulation (techniques and equipments) ; Turbo codes</subject><ispartof>IEEE transactions on communications, 2005-11, Vol.53 (11), p.1841-1849</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-40f8ff3c9a3cf7f9505b92594f998202a204088c5f9d12f3f8a2ac6b3a6613a13</citedby><cites>FETCH-LOGICAL-c385t-40f8ff3c9a3cf7f9505b92594f998202a204088c5f9d12f3f8a2ac6b3a6613a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1532480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1532480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17270134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Vatta, F.</creatorcontrib><creatorcontrib>Scanavino, B.</creatorcontrib><creatorcontrib>Costello, D.J.</creatorcontrib><title>Nonsystematic turbo codes</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>In this paper, we introduce the concept of nonsystematic turbo codes and compare them with classical systematic turbo codes. Nonsystematic turbo codes can achieve lower error floors than systematic turbo codes because of their superior effective free distance properties. Moreover, they can achieve comparable performance in the waterfall region if the nonsystematic constituent encoder has a low-weight feedforward inverse. A uniform interleaver analysis is used to show that rate R=1/3 turbo codes using nonsystematic constituent encoders have larger effective free distances than when systematic constituent encoders are used. Also, mutual information-based transfer characteristics and extrinsic information transfer charts are used to show that rate R=1/3 turbo codes with nonsystematic constituent encoders having low-weight feedforward inverses achieve convergence thresholds comparable to those achieved with systematic constituent encoders. Catastrophic encoders, which do not possess a feedforward inverse, are shown to be capable of achieving low convergence thresholds by doping the code with a small fraction of systematic bits. Finally, we give tables of good nonsystematic turbo codes and present simulation results comparing the performance of systematic and nonsystematic turbo codes.</description><subject>Applied sciences</subject><subject>Bit error rate</subject><subject>Coders</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Constituents</subject><subject>Convergence</subject><subject>Convolution</subject><subject>Convolutional codes</subject><subject>Convolutional encoder feedforward inverses</subject><subject>Doping</subject><subject>effective free distance</subject><subject>Encoders</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Feedforward</subject><subject>Information, signal and communications theory</subject><subject>Inverse</subject><subject>Iterative decoding</subject><subject>iterative decoding convergence thresholds</subject><subject>Modulation coding</subject><subject>nonsystematic turbo codes</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Thresholds</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Turbo codes</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_oHgpgnraOvlOjlL8gtZe6jmkaQJbtrs12T3035u6hYIHT3OYZ96ZeRAaYZhgDPppOV3M5xMCwCeKKyHJGRpgzlUBistzNADQUAgp1SW6SmkDAAwoHaDRZ1OnfWr91ralG7ddXDVj16x9ukYXwVbJ3xzrEH29viyn78Vs8fYxfZ4VjireFgyCCoE6bakLMmgOfKUJ1yxorQgQS_ImpRwPeo1JoEFZYp1YUSsEphbTIXrsc3ex-e58as22TM5Xla190yWjtCBEaE0z-fAvSRRQIqjI4N0fcNN0sc5fmKyGUck0yxDuIReblKIPZhfLrY17g8EcnJpfp-bg1PRO88z9MdgmZ6sQbe3KdBqURAKmh-zbniu996c2p4TlG38A8z58nw</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Banerjee, A.</creator><creator>Vatta, F.</creator><creator>Scanavino, B.</creator><creator>Costello, D.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051101</creationdate><title>Nonsystematic turbo codes</title><author>Banerjee, A. ; Vatta, F. ; Scanavino, B. ; Costello, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-40f8ff3c9a3cf7f9505b92594f998202a204088c5f9d12f3f8a2ac6b3a6613a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Bit error rate</topic><topic>Coders</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Constituents</topic><topic>Convergence</topic><topic>Convolution</topic><topic>Convolutional codes</topic><topic>Convolutional encoder feedforward inverses</topic><topic>Doping</topic><topic>effective free distance</topic><topic>Encoders</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Feedforward</topic><topic>Information, signal and communications theory</topic><topic>Inverse</topic><topic>Iterative decoding</topic><topic>iterative decoding convergence thresholds</topic><topic>Modulation coding</topic><topic>nonsystematic turbo codes</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Thresholds</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Turbo codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Vatta, F.</creatorcontrib><creatorcontrib>Scanavino, B.</creatorcontrib><creatorcontrib>Costello, D.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Banerjee, A.</au><au>Vatta, F.</au><au>Scanavino, B.</au><au>Costello, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsystematic turbo codes</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2005-11-01</date><risdate>2005</risdate><volume>53</volume><issue>11</issue><spage>1841</spage><epage>1849</epage><pages>1841-1849</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>In this paper, we introduce the concept of nonsystematic turbo codes and compare them with classical systematic turbo codes. Nonsystematic turbo codes can achieve lower error floors than systematic turbo codes because of their superior effective free distance properties. Moreover, they can achieve comparable performance in the waterfall region if the nonsystematic constituent encoder has a low-weight feedforward inverse. A uniform interleaver analysis is used to show that rate R=1/3 turbo codes using nonsystematic constituent encoders have larger effective free distances than when systematic constituent encoders are used. Also, mutual information-based transfer characteristics and extrinsic information transfer charts are used to show that rate R=1/3 turbo codes with nonsystematic constituent encoders having low-weight feedforward inverses achieve convergence thresholds comparable to those achieved with systematic constituent encoders. Catastrophic encoders, which do not possess a feedforward inverse, are shown to be capable of achieving low convergence thresholds by doping the code with a small fraction of systematic bits. Finally, we give tables of good nonsystematic turbo codes and present simulation results comparing the performance of systematic and nonsystematic turbo codes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2005.858672</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2005-11, Vol.53 (11), p.1841-1849
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_miscellaneous_896226993
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bit error rate
Coders
Codes
Coding, codes
Constituents
Convergence
Convolution
Convolutional codes
Convolutional encoder feedforward inverses
Doping
effective free distance
Encoders
Exact sciences and technology
Feedback
Feedforward
Information, signal and communications theory
Inverse
Iterative decoding
iterative decoding convergence thresholds
Modulation coding
nonsystematic turbo codes
Signal and communications theory
Signal to noise ratio
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Thresholds
Transmission and modulation (techniques and equipments)
Turbo codes
title Nonsystematic turbo codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsystematic%20turbo%20codes&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Banerjee,%20A.&rft.date=2005-11-01&rft.volume=53&rft.issue=11&rft.spage=1841&rft.epage=1849&rft.pages=1841-1849&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2005.858672&rft_dat=%3Cproquest_RIE%3E896226993%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867437494&rft_id=info:pmid/&rft_ieee_id=1532480&rfr_iscdi=true