Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery

The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2009-04, Vol.189 (1), p.689-692
Hauptverfasser: Xing, L.D., Wang, C.Y., Xu, M.Q., Li, W.S., Cai, Z.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 1
container_start_page 689
container_title Journal of power sources
container_volume 189
creator Xing, L.D.
Wang, C.Y.
Xu, M.Q.
Li, W.S.
Cai, Z.P.
description The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indicate that BO is reduced more easily than PC. The transition state (TS) of ring-opening reaction BO −1 → BO −1 was optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate (IRC) method. The bond orders and atomic charge distribution of the stable points along the minimum energy path (MEP) were analyzed using the natural bond orbital (NBO) method at the B3LYP/6-311++G(d, p) level of DFT. With these calculated results, the reduction mechanism of BO for the formation of solid electrolyte interface (SEI) film on anode of lithium ion battery can be inferred as: BO + e → BO −1 → BO −1 → ⋯ → SEI Film.
doi_str_mv 10.1016/j.jpowsour.2008.08.076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896226040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775308017643</els_id><sourcerecordid>896226040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-773c70131f2cb50a689928c7d4354863aa24591e1c8c76a7d043222181edfe003</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxoMoOK6-guQierDH_OlO0jdl0V1hwct6DpmkmsmQTsYkrTs-hk9semf1qFBQRfh99ZH6EHpJyZYSKt4dtodj-lHSkreMELVdS4pHaEOV5B2Tw_AYbQiXqpNy4E_Rs1IOhBBKJdmgX7d7SBmqtybgUhd3winiDG6x1bdpBrs30ZcZpwnTt7zbQfyZnE93KXSsSxHwlDKu-_s-m3tRQ0sK3mEIYGtO4VQB-1ghT8bCamBicrBywde9X2a8ynamNuT0HD2ZTCjw4qFfoK-fPt5eXnc3X64-X3646Wzfq9o-w60klNOJ2d1AjFDjyJSVrudDrwQ3hvXDSIHa9iiMdKTnjDGqKLgJCOEX6PV57zGnbwuUqmdfLIRgIqSlaDUKxgTpV_LNP0kqpaQ9GwfWUHFGbU6lZJj0MfvZ5JOmRK9x6YP-E5de49JrSdGErx48TGlZTNlE68tfNaNi5KpXjXt_5qCd5ruHrIv1EC04n9uxtUv-f1a_AWursHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777142952</pqid></control><display><type>article</type><title>Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery</title><source>Elsevier ScienceDirect Journals</source><creator>Xing, L.D. ; Wang, C.Y. ; Xu, M.Q. ; Li, W.S. ; Cai, Z.P.</creator><creatorcontrib>Xing, L.D. ; Wang, C.Y. ; Xu, M.Q. ; Li, W.S. ; Cai, Z.P.</creatorcontrib><description>The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indicate that BO is reduced more easily than PC. The transition state (TS) of ring-opening reaction BO −1 → BO −1 was optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate (IRC) method. The bond orders and atomic charge distribution of the stable points along the minimum energy path (MEP) were analyzed using the natural bond orbital (NBO) method at the B3LYP/6-311++G(d, p) level of DFT. With these calculated results, the reduction mechanism of BO for the formation of solid electrolyte interface (SEI) film on anode of lithium ion battery can be inferred as: BO + e → BO −1 → BO −1 → ⋯ → SEI Film.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2008.08.076</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1,3-Benzodioxol-2-one ; Anodes ; Applied sciences ; Bonding ; Charge distribution ; DFT ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Lithium ion battery ; Lithium-ion batteries ; Mathematical models ; Polycarbonates ; Propylene carbonate ; Reduction (electrolytic) ; Reduction mechanism ; Solid electrolytes</subject><ispartof>Journal of power sources, 2009-04, Vol.189 (1), p.689-692</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-773c70131f2cb50a689928c7d4354863aa24591e1c8c76a7d043222181edfe003</citedby><cites>FETCH-LOGICAL-c448t-773c70131f2cb50a689928c7d4354863aa24591e1c8c76a7d043222181edfe003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775308017643$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21693848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, L.D.</creatorcontrib><creatorcontrib>Wang, C.Y.</creatorcontrib><creatorcontrib>Xu, M.Q.</creatorcontrib><creatorcontrib>Li, W.S.</creatorcontrib><creatorcontrib>Cai, Z.P.</creatorcontrib><title>Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery</title><title>Journal of power sources</title><description>The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indicate that BO is reduced more easily than PC. The transition state (TS) of ring-opening reaction BO −1 → BO −1 was optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate (IRC) method. The bond orders and atomic charge distribution of the stable points along the minimum energy path (MEP) were analyzed using the natural bond orbital (NBO) method at the B3LYP/6-311++G(d, p) level of DFT. With these calculated results, the reduction mechanism of BO for the formation of solid electrolyte interface (SEI) film on anode of lithium ion battery can be inferred as: BO + e → BO −1 → BO −1 → ⋯ → SEI Film.</description><subject>1,3-Benzodioxol-2-one</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Bonding</subject><subject>Charge distribution</subject><subject>DFT</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>Polycarbonates</subject><subject>Propylene carbonate</subject><subject>Reduction (electrolytic)</subject><subject>Reduction mechanism</subject><subject>Solid electrolytes</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxoMoOK6-guQierDH_OlO0jdl0V1hwct6DpmkmsmQTsYkrTs-hk9semf1qFBQRfh99ZH6EHpJyZYSKt4dtodj-lHSkreMELVdS4pHaEOV5B2Tw_AYbQiXqpNy4E_Rs1IOhBBKJdmgX7d7SBmqtybgUhd3winiDG6x1bdpBrs30ZcZpwnTt7zbQfyZnE93KXSsSxHwlDKu-_s-m3tRQ0sK3mEIYGtO4VQB-1ghT8bCamBicrBywde9X2a8ynamNuT0HD2ZTCjw4qFfoK-fPt5eXnc3X64-X3646Wzfq9o-w60klNOJ2d1AjFDjyJSVrudDrwQ3hvXDSIHa9iiMdKTnjDGqKLgJCOEX6PV57zGnbwuUqmdfLIRgIqSlaDUKxgTpV_LNP0kqpaQ9GwfWUHFGbU6lZJj0MfvZ5JOmRK9x6YP-E5de49JrSdGErx48TGlZTNlE68tfNaNi5KpXjXt_5qCd5ruHrIv1EC04n9uxtUv-f1a_AWursHY</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Xing, L.D.</creator><creator>Wang, C.Y.</creator><creator>Xu, M.Q.</creator><creator>Li, W.S.</creator><creator>Cai, Z.P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20090401</creationdate><title>Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery</title><author>Xing, L.D. ; Wang, C.Y. ; Xu, M.Q. ; Li, W.S. ; Cai, Z.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-773c70131f2cb50a689928c7d4354863aa24591e1c8c76a7d043222181edfe003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>1,3-Benzodioxol-2-one</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Bonding</topic><topic>Charge distribution</topic><topic>DFT</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>Polycarbonates</topic><topic>Propylene carbonate</topic><topic>Reduction (electrolytic)</topic><topic>Reduction mechanism</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, L.D.</creatorcontrib><creatorcontrib>Wang, C.Y.</creatorcontrib><creatorcontrib>Xu, M.Q.</creatorcontrib><creatorcontrib>Li, W.S.</creatorcontrib><creatorcontrib>Cai, Z.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, L.D.</au><au>Wang, C.Y.</au><au>Xu, M.Q.</au><au>Li, W.S.</au><au>Cai, Z.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery</atitle><jtitle>Journal of power sources</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>189</volume><issue>1</issue><spage>689</spage><epage>692</epage><pages>689-692</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indicate that BO is reduced more easily than PC. The transition state (TS) of ring-opening reaction BO −1 → BO −1 was optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate (IRC) method. The bond orders and atomic charge distribution of the stable points along the minimum energy path (MEP) were analyzed using the natural bond orbital (NBO) method at the B3LYP/6-311++G(d, p) level of DFT. With these calculated results, the reduction mechanism of BO for the formation of solid electrolyte interface (SEI) film on anode of lithium ion battery can be inferred as: BO + e → BO −1 → BO −1 → ⋯ → SEI Film.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2008.08.076</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2009-04, Vol.189 (1), p.689-692
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_896226040
source Elsevier ScienceDirect Journals
subjects 1,3-Benzodioxol-2-one
Anodes
Applied sciences
Bonding
Charge distribution
DFT
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Lithium ion battery
Lithium-ion batteries
Mathematical models
Polycarbonates
Propylene carbonate
Reduction (electrolytic)
Reduction mechanism
Solid electrolytes
title Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20on%20reduction%20mechanism%20of%201,3-benzodioxol-2-one%20for%20the%20formation%20of%20solid%20electrolyte%20interface%20on%20anode%20of%20lithium%20ion%20battery&rft.jtitle=Journal%20of%20power%20sources&rft.au=Xing,%20L.D.&rft.date=2009-04-01&rft.volume=189&rft.issue=1&rft.spage=689&rft.epage=692&rft.pages=689-692&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2008.08.076&rft_dat=%3Cproquest_cross%3E896226040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777142952&rft_id=info:pmid/&rft_els_id=S0378775308017643&rfr_iscdi=true