Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery
The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indica...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2009-04, Vol.189 (1), p.689-692 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 1 |
container_start_page | 689 |
container_title | Journal of power sources |
container_volume | 189 |
creator | Xing, L.D. Wang, C.Y. Xu, M.Q. Li, W.S. Cai, Z.P. |
description | The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indicate that BO is reduced more easily than PC. The transition state (TS) of ring-opening reaction BO
−1
→
BO
−1
was optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate (IRC) method. The bond orders and atomic charge distribution of the stable points along the minimum energy path (MEP) were analyzed using the natural bond orbital (NBO) method at the B3LYP/6-311++G(d, p) level of DFT. With these calculated results, the reduction mechanism of BO for the formation of solid electrolyte interface (SEI) film on anode of lithium ion battery can be inferred as: BO
+
e
→
BO
−1
→
BO
−1
→
⋯
→
SEI Film. |
doi_str_mv | 10.1016/j.jpowsour.2008.08.076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896226040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775308017643</els_id><sourcerecordid>896226040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-773c70131f2cb50a689928c7d4354863aa24591e1c8c76a7d043222181edfe003</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxoMoOK6-guQierDH_OlO0jdl0V1hwct6DpmkmsmQTsYkrTs-hk9semf1qFBQRfh99ZH6EHpJyZYSKt4dtodj-lHSkreMELVdS4pHaEOV5B2Tw_AYbQiXqpNy4E_Rs1IOhBBKJdmgX7d7SBmqtybgUhd3winiDG6x1bdpBrs30ZcZpwnTt7zbQfyZnE93KXSsSxHwlDKu-_s-m3tRQ0sK3mEIYGtO4VQB-1ghT8bCamBicrBywde9X2a8ynamNuT0HD2ZTCjw4qFfoK-fPt5eXnc3X64-X3646Wzfq9o-w60klNOJ2d1AjFDjyJSVrudDrwQ3hvXDSIHa9iiMdKTnjDGqKLgJCOEX6PV57zGnbwuUqmdfLIRgIqSlaDUKxgTpV_LNP0kqpaQ9GwfWUHFGbU6lZJj0MfvZ5JOmRK9x6YP-E5de49JrSdGErx48TGlZTNlE68tfNaNi5KpXjXt_5qCd5ruHrIv1EC04n9uxtUv-f1a_AWursHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777142952</pqid></control><display><type>article</type><title>Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery</title><source>Elsevier ScienceDirect Journals</source><creator>Xing, L.D. ; Wang, C.Y. ; Xu, M.Q. ; Li, W.S. ; Cai, Z.P.</creator><creatorcontrib>Xing, L.D. ; Wang, C.Y. ; Xu, M.Q. ; Li, W.S. ; Cai, Z.P.</creatorcontrib><description>The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indicate that BO is reduced more easily than PC. The transition state (TS) of ring-opening reaction BO
−1
→
BO
−1
was optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate (IRC) method. The bond orders and atomic charge distribution of the stable points along the minimum energy path (MEP) were analyzed using the natural bond orbital (NBO) method at the B3LYP/6-311++G(d, p) level of DFT. With these calculated results, the reduction mechanism of BO for the formation of solid electrolyte interface (SEI) film on anode of lithium ion battery can be inferred as: BO
+
e
→
BO
−1
→
BO
−1
→
⋯
→
SEI Film.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2008.08.076</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1,3-Benzodioxol-2-one ; Anodes ; Applied sciences ; Bonding ; Charge distribution ; DFT ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Lithium ion battery ; Lithium-ion batteries ; Mathematical models ; Polycarbonates ; Propylene carbonate ; Reduction (electrolytic) ; Reduction mechanism ; Solid electrolytes</subject><ispartof>Journal of power sources, 2009-04, Vol.189 (1), p.689-692</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-773c70131f2cb50a689928c7d4354863aa24591e1c8c76a7d043222181edfe003</citedby><cites>FETCH-LOGICAL-c448t-773c70131f2cb50a689928c7d4354863aa24591e1c8c76a7d043222181edfe003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775308017643$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21693848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, L.D.</creatorcontrib><creatorcontrib>Wang, C.Y.</creatorcontrib><creatorcontrib>Xu, M.Q.</creatorcontrib><creatorcontrib>Li, W.S.</creatorcontrib><creatorcontrib>Cai, Z.P.</creatorcontrib><title>Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery</title><title>Journal of power sources</title><description>The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indicate that BO is reduced more easily than PC. The transition state (TS) of ring-opening reaction BO
−1
→
BO
−1
was optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate (IRC) method. The bond orders and atomic charge distribution of the stable points along the minimum energy path (MEP) were analyzed using the natural bond orbital (NBO) method at the B3LYP/6-311++G(d, p) level of DFT. With these calculated results, the reduction mechanism of BO for the formation of solid electrolyte interface (SEI) film on anode of lithium ion battery can be inferred as: BO
+
e
→
BO
−1
→
BO
−1
→
⋯
→
SEI Film.</description><subject>1,3-Benzodioxol-2-one</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Bonding</subject><subject>Charge distribution</subject><subject>DFT</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>Polycarbonates</subject><subject>Propylene carbonate</subject><subject>Reduction (electrolytic)</subject><subject>Reduction mechanism</subject><subject>Solid electrolytes</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxoMoOK6-guQierDH_OlO0jdl0V1hwct6DpmkmsmQTsYkrTs-hk9semf1qFBQRfh99ZH6EHpJyZYSKt4dtodj-lHSkreMELVdS4pHaEOV5B2Tw_AYbQiXqpNy4E_Rs1IOhBBKJdmgX7d7SBmqtybgUhd3winiDG6x1bdpBrs30ZcZpwnTt7zbQfyZnE93KXSsSxHwlDKu-_s-m3tRQ0sK3mEIYGtO4VQB-1ghT8bCamBicrBywde9X2a8ynamNuT0HD2ZTCjw4qFfoK-fPt5eXnc3X64-X3646Wzfq9o-w60klNOJ2d1AjFDjyJSVrudDrwQ3hvXDSIHa9iiMdKTnjDGqKLgJCOEX6PV57zGnbwuUqmdfLIRgIqSlaDUKxgTpV_LNP0kqpaQ9GwfWUHFGbU6lZJj0MfvZ5JOmRK9x6YP-E5de49JrSdGErx48TGlZTNlE68tfNaNi5KpXjXt_5qCd5ruHrIv1EC04n9uxtUv-f1a_AWursHY</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Xing, L.D.</creator><creator>Wang, C.Y.</creator><creator>Xu, M.Q.</creator><creator>Li, W.S.</creator><creator>Cai, Z.P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20090401</creationdate><title>Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery</title><author>Xing, L.D. ; Wang, C.Y. ; Xu, M.Q. ; Li, W.S. ; Cai, Z.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-773c70131f2cb50a689928c7d4354863aa24591e1c8c76a7d043222181edfe003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>1,3-Benzodioxol-2-one</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Bonding</topic><topic>Charge distribution</topic><topic>DFT</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>Polycarbonates</topic><topic>Propylene carbonate</topic><topic>Reduction (electrolytic)</topic><topic>Reduction mechanism</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, L.D.</creatorcontrib><creatorcontrib>Wang, C.Y.</creatorcontrib><creatorcontrib>Xu, M.Q.</creatorcontrib><creatorcontrib>Li, W.S.</creatorcontrib><creatorcontrib>Cai, Z.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, L.D.</au><au>Wang, C.Y.</au><au>Xu, M.Q.</au><au>Li, W.S.</au><au>Cai, Z.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery</atitle><jtitle>Journal of power sources</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>189</volume><issue>1</issue><spage>689</spage><epage>692</epage><pages>689-692</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The geometric parameters of 1, 3-benzodioxol-2-one (BO) and propylene carbonate (PC) was optimized at the B3LYP/6-311++G (d, p) level of density functional theory (DFT) with the polarized continuum models (PCM). The obtained frontier molecular orbital energies and vertical electron affinities indicate that BO is reduced more easily than PC. The transition state (TS) of ring-opening reaction BO
−1
→
BO
−1
was optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate (IRC) method. The bond orders and atomic charge distribution of the stable points along the minimum energy path (MEP) were analyzed using the natural bond orbital (NBO) method at the B3LYP/6-311++G(d, p) level of DFT. With these calculated results, the reduction mechanism of BO for the formation of solid electrolyte interface (SEI) film on anode of lithium ion battery can be inferred as: BO
+
e
→
BO
−1
→
BO
−1
→
⋯
→
SEI Film.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2008.08.076</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2009-04, Vol.189 (1), p.689-692 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_896226040 |
source | Elsevier ScienceDirect Journals |
subjects | 1,3-Benzodioxol-2-one Anodes Applied sciences Bonding Charge distribution DFT Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology Lithium ion battery Lithium-ion batteries Mathematical models Polycarbonates Propylene carbonate Reduction (electrolytic) Reduction mechanism Solid electrolytes |
title | Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20on%20reduction%20mechanism%20of%201,3-benzodioxol-2-one%20for%20the%20formation%20of%20solid%20electrolyte%20interface%20on%20anode%20of%20lithium%20ion%20battery&rft.jtitle=Journal%20of%20power%20sources&rft.au=Xing,%20L.D.&rft.date=2009-04-01&rft.volume=189&rft.issue=1&rft.spage=689&rft.epage=692&rft.pages=689-692&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2008.08.076&rft_dat=%3Cproquest_cross%3E896226040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777142952&rft_id=info:pmid/&rft_els_id=S0378775308017643&rfr_iscdi=true |