Cements with Embedded Living Microorganisms - A New Class of Biocatalytic Composite Materials for Application in Bioremediation, Biotechnology

Living bacteria (Rhodococcus ruber) and yeast (Saccharomyces cerevisiae) cells can be embedded within magnesium phosphate cement (MPC). The cements are prepared by the admixture of microorganisms to a water‐based slurry system of Mg3(PO4)2 powder and ammonium phosphate solution whereas the setting o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2011-02, Vol.13 (1-2), p.B25-B31
Hauptverfasser: Soltmann, Ulrich, Nies, Berthold, Böttcher, Horst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page B31
container_issue 1-2
container_start_page B25
container_title Advanced engineering materials
container_volume 13
creator Soltmann, Ulrich
Nies, Berthold
Böttcher, Horst
description Living bacteria (Rhodococcus ruber) and yeast (Saccharomyces cerevisiae) cells can be embedded within magnesium phosphate cement (MPC). The cements are prepared by the admixture of microorganisms to a water‐based slurry system of Mg3(PO4)2 powder and ammonium phosphate solution whereas the setting of the slurry occurs within few minutes. To test the biocatalytic activity of the embedded microorganisms the phenol degradation by R. ruber and the glucose conversion by S. cerevisiae are described. Embedded cells survived within the cements and remain active. However, the glucose or phenol consumption rate was clearly reduced after immobilization within the compact macroporous concrete matrix. By using leachable pore forming additives or by admixture of cellulose fibers the macroporous structure of the MPC can be improved. The bioactive composite material exhibits good mechanical and chemical stability. It can be used as new stable biocatalysts, e.g., for applications in bioremediation and biotechnology. Living yeast (Saccharomyces cerevisiae) and bacteria cells (Rhodococcus ruber) can be embedded within magnesium phosphate cement (MPC). MPCs are produced by using a water‐based slurry system of Mg3(PO4)2 powder and ammonium phosphate solution allowing the gentle admixture of living microorganisms. The resulting bioactive composite materials showing important advantages, like a high mechanical, chemical and thermal stability, a gentle preparation process and the fabrication of molded, crack‐free parts with low shrinkage. They can be used as new stable biocatalysts, e.g., for the bioconversion of glucose and phenol, respectively.
doi_str_mv 10.1002/adem.201080040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896222433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896222433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3920-29dc19b60a59f700847e6ab6d9ddf9aa0ba3cc47b5bae45ec427bf06e091c9c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiNEJUrLlbNvcCDb8Uec-LiEZVtpt3CoxNFy7MnWkMTBTln2T_Q3k2VRxQlOHo-eZ0aaN8teU1hQAHZlHPYLBhQqAAHPsnNasDJnUlTP51rwKqeykC-ylyl9BaAUKD_PHmvscZgS2fvpnqz6Bp1DRzb-hx92ZOttDCHuzOBTn0hOluQW96TuTEoktOS9D9ZMpjtM3pI69GNIfkKyNRNGb7pE2hDJchw7P2M-DMQPRyfOO53_3Xl3_E9o74fQhd3hMjtrZw9f_XkvsruPq7v6Ot98Wt_Uy01uuWKQM-UsVY0EU6i2BKhEidI00innWmUMNIZbK8qmaAyKAq1gZdOCRFDUKssvsjensWMM3x8wTbr3yWLXmQHDQ9KVkowxwflMvv0nScuCC1VRxmZ0cULnm6UUsdVj9L2JB01BHxPSx4T0U0KzoE7C3nd4-A-tlx9W27_d_OT6NOHPJ9fEb1qWvCz0l9u1Xm_oWlCp9Gf-C0kYpiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753498122</pqid></control><display><type>article</type><title>Cements with Embedded Living Microorganisms - A New Class of Biocatalytic Composite Materials for Application in Bioremediation, Biotechnology</title><source>Access via Wiley Online Library</source><creator>Soltmann, Ulrich ; Nies, Berthold ; Böttcher, Horst</creator><creatorcontrib>Soltmann, Ulrich ; Nies, Berthold ; Böttcher, Horst</creatorcontrib><description>Living bacteria (Rhodococcus ruber) and yeast (Saccharomyces cerevisiae) cells can be embedded within magnesium phosphate cement (MPC). The cements are prepared by the admixture of microorganisms to a water‐based slurry system of Mg3(PO4)2 powder and ammonium phosphate solution whereas the setting of the slurry occurs within few minutes. To test the biocatalytic activity of the embedded microorganisms the phenol degradation by R. ruber and the glucose conversion by S. cerevisiae are described. Embedded cells survived within the cements and remain active. However, the glucose or phenol consumption rate was clearly reduced after immobilization within the compact macroporous concrete matrix. By using leachable pore forming additives or by admixture of cellulose fibers the macroporous structure of the MPC can be improved. The bioactive composite material exhibits good mechanical and chemical stability. It can be used as new stable biocatalysts, e.g., for applications in bioremediation and biotechnology. Living yeast (Saccharomyces cerevisiae) and bacteria cells (Rhodococcus ruber) can be embedded within magnesium phosphate cement (MPC). MPCs are produced by using a water‐based slurry system of Mg3(PO4)2 powder and ammonium phosphate solution allowing the gentle admixture of living microorganisms. The resulting bioactive composite materials showing important advantages, like a high mechanical, chemical and thermal stability, a gentle preparation process and the fabrication of molded, crack‐free parts with low shrinkage. They can be used as new stable biocatalysts, e.g., for the bioconversion of glucose and phenol, respectively.</description><identifier>ISSN: 1438-1656</identifier><identifier>ISSN: 1527-2648</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.201080040</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Admixtures ; Bacteria ; bioactive concrete material ; Bioremediation ; Cements ; Composite materials ; Glucose ; immobilization ; magnesium phosphate cement ; Microorganisms ; Phenol ; Rhodococcus ruber ; Saccharomyces cerevisiae ; Slurries ; yeast</subject><ispartof>Advanced engineering materials, 2011-02, Vol.13 (1-2), p.B25-B31</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3920-29dc19b60a59f700847e6ab6d9ddf9aa0ba3cc47b5bae45ec427bf06e091c9c3</citedby><cites>FETCH-LOGICAL-c3920-29dc19b60a59f700847e6ab6d9ddf9aa0ba3cc47b5bae45ec427bf06e091c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.201080040$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.201080040$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Soltmann, Ulrich</creatorcontrib><creatorcontrib>Nies, Berthold</creatorcontrib><creatorcontrib>Böttcher, Horst</creatorcontrib><title>Cements with Embedded Living Microorganisms - A New Class of Biocatalytic Composite Materials for Application in Bioremediation, Biotechnology</title><title>Advanced engineering materials</title><addtitle>Adv. Eng. Mater</addtitle><description>Living bacteria (Rhodococcus ruber) and yeast (Saccharomyces cerevisiae) cells can be embedded within magnesium phosphate cement (MPC). The cements are prepared by the admixture of microorganisms to a water‐based slurry system of Mg3(PO4)2 powder and ammonium phosphate solution whereas the setting of the slurry occurs within few minutes. To test the biocatalytic activity of the embedded microorganisms the phenol degradation by R. ruber and the glucose conversion by S. cerevisiae are described. Embedded cells survived within the cements and remain active. However, the glucose or phenol consumption rate was clearly reduced after immobilization within the compact macroporous concrete matrix. By using leachable pore forming additives or by admixture of cellulose fibers the macroporous structure of the MPC can be improved. The bioactive composite material exhibits good mechanical and chemical stability. It can be used as new stable biocatalysts, e.g., for applications in bioremediation and biotechnology. Living yeast (Saccharomyces cerevisiae) and bacteria cells (Rhodococcus ruber) can be embedded within magnesium phosphate cement (MPC). MPCs are produced by using a water‐based slurry system of Mg3(PO4)2 powder and ammonium phosphate solution allowing the gentle admixture of living microorganisms. The resulting bioactive composite materials showing important advantages, like a high mechanical, chemical and thermal stability, a gentle preparation process and the fabrication of molded, crack‐free parts with low shrinkage. They can be used as new stable biocatalysts, e.g., for the bioconversion of glucose and phenol, respectively.</description><subject>Admixtures</subject><subject>Bacteria</subject><subject>bioactive concrete material</subject><subject>Bioremediation</subject><subject>Cements</subject><subject>Composite materials</subject><subject>Glucose</subject><subject>immobilization</subject><subject>magnesium phosphate cement</subject><subject>Microorganisms</subject><subject>Phenol</subject><subject>Rhodococcus ruber</subject><subject>Saccharomyces cerevisiae</subject><subject>Slurries</subject><subject>yeast</subject><issn>1438-1656</issn><issn>1527-2648</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiNEJUrLlbNvcCDb8Uec-LiEZVtpt3CoxNFy7MnWkMTBTln2T_Q3k2VRxQlOHo-eZ0aaN8teU1hQAHZlHPYLBhQqAAHPsnNasDJnUlTP51rwKqeykC-ylyl9BaAUKD_PHmvscZgS2fvpnqz6Bp1DRzb-hx92ZOttDCHuzOBTn0hOluQW96TuTEoktOS9D9ZMpjtM3pI69GNIfkKyNRNGb7pE2hDJchw7P2M-DMQPRyfOO53_3Xl3_E9o74fQhd3hMjtrZw9f_XkvsruPq7v6Ot98Wt_Uy01uuWKQM-UsVY0EU6i2BKhEidI00innWmUMNIZbK8qmaAyKAq1gZdOCRFDUKssvsjensWMM3x8wTbr3yWLXmQHDQ9KVkowxwflMvv0nScuCC1VRxmZ0cULnm6UUsdVj9L2JB01BHxPSx4T0U0KzoE7C3nd4-A-tlx9W27_d_OT6NOHPJ9fEb1qWvCz0l9u1Xm_oWlCp9Gf-C0kYpiA</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Soltmann, Ulrich</creator><creator>Nies, Berthold</creator><creator>Böttcher, Horst</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7QO</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201102</creationdate><title>Cements with Embedded Living Microorganisms - A New Class of Biocatalytic Composite Materials for Application in Bioremediation, Biotechnology</title><author>Soltmann, Ulrich ; Nies, Berthold ; Böttcher, Horst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3920-29dc19b60a59f700847e6ab6d9ddf9aa0ba3cc47b5bae45ec427bf06e091c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Admixtures</topic><topic>Bacteria</topic><topic>bioactive concrete material</topic><topic>Bioremediation</topic><topic>Cements</topic><topic>Composite materials</topic><topic>Glucose</topic><topic>immobilization</topic><topic>magnesium phosphate cement</topic><topic>Microorganisms</topic><topic>Phenol</topic><topic>Rhodococcus ruber</topic><topic>Saccharomyces cerevisiae</topic><topic>Slurries</topic><topic>yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltmann, Ulrich</creatorcontrib><creatorcontrib>Nies, Berthold</creatorcontrib><creatorcontrib>Böttcher, Horst</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltmann, Ulrich</au><au>Nies, Berthold</au><au>Böttcher, Horst</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cements with Embedded Living Microorganisms - A New Class of Biocatalytic Composite Materials for Application in Bioremediation, Biotechnology</atitle><jtitle>Advanced engineering materials</jtitle><addtitle>Adv. Eng. Mater</addtitle><date>2011-02</date><risdate>2011</risdate><volume>13</volume><issue>1-2</issue><spage>B25</spage><epage>B31</epage><pages>B25-B31</pages><issn>1438-1656</issn><issn>1527-2648</issn><eissn>1527-2648</eissn><abstract>Living bacteria (Rhodococcus ruber) and yeast (Saccharomyces cerevisiae) cells can be embedded within magnesium phosphate cement (MPC). The cements are prepared by the admixture of microorganisms to a water‐based slurry system of Mg3(PO4)2 powder and ammonium phosphate solution whereas the setting of the slurry occurs within few minutes. To test the biocatalytic activity of the embedded microorganisms the phenol degradation by R. ruber and the glucose conversion by S. cerevisiae are described. Embedded cells survived within the cements and remain active. However, the glucose or phenol consumption rate was clearly reduced after immobilization within the compact macroporous concrete matrix. By using leachable pore forming additives or by admixture of cellulose fibers the macroporous structure of the MPC can be improved. The bioactive composite material exhibits good mechanical and chemical stability. It can be used as new stable biocatalysts, e.g., for applications in bioremediation and biotechnology. Living yeast (Saccharomyces cerevisiae) and bacteria cells (Rhodococcus ruber) can be embedded within magnesium phosphate cement (MPC). MPCs are produced by using a water‐based slurry system of Mg3(PO4)2 powder and ammonium phosphate solution allowing the gentle admixture of living microorganisms. The resulting bioactive composite materials showing important advantages, like a high mechanical, chemical and thermal stability, a gentle preparation process and the fabrication of molded, crack‐free parts with low shrinkage. They can be used as new stable biocatalysts, e.g., for the bioconversion of glucose and phenol, respectively.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adem.201080040</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2011-02, Vol.13 (1-2), p.B25-B31
issn 1438-1656
1527-2648
1527-2648
language eng
recordid cdi_proquest_miscellaneous_896222433
source Access via Wiley Online Library
subjects Admixtures
Bacteria
bioactive concrete material
Bioremediation
Cements
Composite materials
Glucose
immobilization
magnesium phosphate cement
Microorganisms
Phenol
Rhodococcus ruber
Saccharomyces cerevisiae
Slurries
yeast
title Cements with Embedded Living Microorganisms - A New Class of Biocatalytic Composite Materials for Application in Bioremediation, Biotechnology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cements%20with%20Embedded%20Living%20Microorganisms%20-%20A%20New%20Class%20of%20Biocatalytic%20Composite%20Materials%20for%20Application%20in%20Bioremediation,%20Biotechnology&rft.jtitle=Advanced%20engineering%20materials&rft.au=Soltmann,%20Ulrich&rft.date=2011-02&rft.volume=13&rft.issue=1-2&rft.spage=B25&rft.epage=B31&rft.pages=B25-B31&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.201080040&rft_dat=%3Cproquest_cross%3E896222433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753498122&rft_id=info:pmid/&rfr_iscdi=true