Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane
The transient sound field caused by a Dirac delta impulse function above an infinite locally reacting plane can be calculated by applying the inverse Fourier transform of the corresponding half-space Green's function in frequency domain. As a starting point, the representation given by Ochmann...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2011-06, Vol.129 (6), p.3502-3512 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3512 |
---|---|
container_issue | 6 |
container_start_page | 3502 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 129 |
creator | Ochmann, Martin |
description | The transient sound field caused by a Dirac delta impulse function above an infinite locally reacting plane can be calculated by applying the inverse Fourier transform of the corresponding half-space Green's function in frequency domain. As a starting point, the representation given by Ochmann [J. Acoust. Soc. Am.
116
(6), 3304-3311 (2004)] is used, which consists of discrete and continuous superposition of point sources. For a locally reacting plane with masslike character and also with pure absorbing behavior, it is possible to express the resulting impulse response in closed form. Such a result is surprising, because corresponding formulations in the frequency domain are not available yet. Hence, the first main result is the closed form solution Eq.
for an impulse response over an infinite plane with a pure imaginary impedance. The second main result is the closed form solution Eq.
for an impulse response over an infinite plane with a pure real impedance. As a particular application of both main results, a convolution technique is used for deriving formulas for point sources with a general time dependency. For special signals like an exponentially decaying time signal or a triangular shaped impulse, the resulting sound field can be presented in terms of elementary functions. |
doi_str_mv | 10.1121/1.3570947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896218766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896218766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-6707f53ded48f01f4451272923f091b9e299d0070b361864c8023964dbbcee5b3</originalsourceid><addsrcrecordid>eNqFkc2L1TAUxYMozpvRhf-AZCMyi465SZqPjTA8_IIBN7oOaZpqtG1qbiv435vy3uhKXIRw4JeTe88h5BmwGwAOr-BGtJpZqR-QA7ScNabl8iE5MMagkVapC3KJ-K3K1gj7mFxwUIYLrQ_EHceMsadDLhPFPG5ryjPukq5fI_Uhb7im4EeapmUbMdIScalIpPlnLNTTySOO6XvVVc3Ud5hLl-YvdBn9HJ-QR4Ovz56e7yvy-e2bT8f3zd3Hdx-Ot3dNkAzWRmmmh1b0sZdmYDBI2QLX3HIxMAudjdzanjHNOqHAKBkM48Iq2XddiLHtxBV5efJdSv6xRVzdlDDEcZ-hruCMVRyMVur_pBbApWl38vpEhpIRSxzcUtLkyy8HzO3BO3Dn4Cv7_Oy6dVPs_5D3SVfgxRnwWOMcip9Dwr-cFMDqqdzrE4chrX5v49-_nrpze3fuvjvxG5mnnv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873124856</pqid></control><display><type>article</type><title>Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Ochmann, Martin</creator><creatorcontrib>Ochmann, Martin</creatorcontrib><description>The transient sound field caused by a Dirac delta impulse function above an infinite locally reacting plane can be calculated by applying the inverse Fourier transform of the corresponding half-space Green's function in frequency domain. As a starting point, the representation given by Ochmann [J. Acoust. Soc. Am.
116
(6), 3304-3311 (2004)] is used, which consists of discrete and continuous superposition of point sources. For a locally reacting plane with masslike character and also with pure absorbing behavior, it is possible to express the resulting impulse response in closed form. Such a result is surprising, because corresponding formulations in the frequency domain are not available yet. Hence, the first main result is the closed form solution Eq.
for an impulse response over an infinite plane with a pure imaginary impedance. The second main result is the closed form solution Eq.
for an impulse response over an infinite plane with a pure real impedance. As a particular application of both main results, a convolution technique is used for deriving formulas for point sources with a general time dependency. For special signals like an exponentially decaying time signal or a triangular shaped impulse, the resulting sound field can be presented in terms of elementary functions.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.3570947</identifier><identifier>PMID: 21682377</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Melville, NY: Acoustical Society of America</publisher><subject>Absorption ; Acoustics ; Acoustics - instrumentation ; Aeroacoustics, atmospheric sound ; Equipment Design ; Exact sciences and technology ; Exact solutions ; Fourier Analysis ; Frequency domains ; Fundamental areas of phenomenology (including applications) ; Impulse response ; Linear acoustics ; Mathematical analysis ; Models, Theoretical ; Motion ; Physics ; Planes ; Point sources ; Pressure ; Sound ; Sound fields ; Sound Spectrography ; Time Factors</subject><ispartof>The Journal of the Acoustical Society of America, 2011-06, Vol.129 (6), p.3502-3512</ispartof><rights>2011 Acoustical Society of America</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-6707f53ded48f01f4451272923f091b9e299d0070b361864c8023964dbbcee5b3</citedby><cites>FETCH-LOGICAL-c401t-6707f53ded48f01f4451272923f091b9e299d0070b361864c8023964dbbcee5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.3570947$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24310431$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21682377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ochmann, Martin</creatorcontrib><title>Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The transient sound field caused by a Dirac delta impulse function above an infinite locally reacting plane can be calculated by applying the inverse Fourier transform of the corresponding half-space Green's function in frequency domain. As a starting point, the representation given by Ochmann [J. Acoust. Soc. Am.
116
(6), 3304-3311 (2004)] is used, which consists of discrete and continuous superposition of point sources. For a locally reacting plane with masslike character and also with pure absorbing behavior, it is possible to express the resulting impulse response in closed form. Such a result is surprising, because corresponding formulations in the frequency domain are not available yet. Hence, the first main result is the closed form solution Eq.
for an impulse response over an infinite plane with a pure imaginary impedance. The second main result is the closed form solution Eq.
for an impulse response over an infinite plane with a pure real impedance. As a particular application of both main results, a convolution technique is used for deriving formulas for point sources with a general time dependency. For special signals like an exponentially decaying time signal or a triangular shaped impulse, the resulting sound field can be presented in terms of elementary functions.</description><subject>Absorption</subject><subject>Acoustics</subject><subject>Acoustics - instrumentation</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fourier Analysis</subject><subject>Frequency domains</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Impulse response</subject><subject>Linear acoustics</subject><subject>Mathematical analysis</subject><subject>Models, Theoretical</subject><subject>Motion</subject><subject>Physics</subject><subject>Planes</subject><subject>Point sources</subject><subject>Pressure</subject><subject>Sound</subject><subject>Sound fields</subject><subject>Sound Spectrography</subject><subject>Time Factors</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2L1TAUxYMozpvRhf-AZCMyi465SZqPjTA8_IIBN7oOaZpqtG1qbiv435vy3uhKXIRw4JeTe88h5BmwGwAOr-BGtJpZqR-QA7ScNabl8iE5MMagkVapC3KJ-K3K1gj7mFxwUIYLrQ_EHceMsadDLhPFPG5ryjPukq5fI_Uhb7im4EeapmUbMdIScalIpPlnLNTTySOO6XvVVc3Ud5hLl-YvdBn9HJ-QR4Ovz56e7yvy-e2bT8f3zd3Hdx-Ot3dNkAzWRmmmh1b0sZdmYDBI2QLX3HIxMAudjdzanjHNOqHAKBkM48Iq2XddiLHtxBV5efJdSv6xRVzdlDDEcZ-hruCMVRyMVur_pBbApWl38vpEhpIRSxzcUtLkyy8HzO3BO3Dn4Cv7_Oy6dVPs_5D3SVfgxRnwWOMcip9Dwr-cFMDqqdzrE4chrX5v49-_nrpze3fuvjvxG5mnnv4</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Ochmann, Martin</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane</title><author>Ochmann, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-6707f53ded48f01f4451272923f091b9e299d0070b361864c8023964dbbcee5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorption</topic><topic>Acoustics</topic><topic>Acoustics - instrumentation</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fourier Analysis</topic><topic>Frequency domains</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Impulse response</topic><topic>Linear acoustics</topic><topic>Mathematical analysis</topic><topic>Models, Theoretical</topic><topic>Motion</topic><topic>Physics</topic><topic>Planes</topic><topic>Point sources</topic><topic>Pressure</topic><topic>Sound</topic><topic>Sound fields</topic><topic>Sound Spectrography</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochmann, Martin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochmann, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>129</volume><issue>6</issue><spage>3502</spage><epage>3512</epage><pages>3502-3512</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The transient sound field caused by a Dirac delta impulse function above an infinite locally reacting plane can be calculated by applying the inverse Fourier transform of the corresponding half-space Green's function in frequency domain. As a starting point, the representation given by Ochmann [J. Acoust. Soc. Am.
116
(6), 3304-3311 (2004)] is used, which consists of discrete and continuous superposition of point sources. For a locally reacting plane with masslike character and also with pure absorbing behavior, it is possible to express the resulting impulse response in closed form. Such a result is surprising, because corresponding formulations in the frequency domain are not available yet. Hence, the first main result is the closed form solution Eq.
for an impulse response over an infinite plane with a pure imaginary impedance. The second main result is the closed form solution Eq.
for an impulse response over an infinite plane with a pure real impedance. As a particular application of both main results, a convolution technique is used for deriving formulas for point sources with a general time dependency. For special signals like an exponentially decaying time signal or a triangular shaped impulse, the resulting sound field can be presented in terms of elementary functions.</abstract><cop>Melville, NY</cop><pub>Acoustical Society of America</pub><pmid>21682377</pmid><doi>10.1121/1.3570947</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2011-06, Vol.129 (6), p.3502-3512 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_896218766 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
subjects | Absorption Acoustics Acoustics - instrumentation Aeroacoustics, atmospheric sound Equipment Design Exact sciences and technology Exact solutions Fourier Analysis Frequency domains Fundamental areas of phenomenology (including applications) Impulse response Linear acoustics Mathematical analysis Models, Theoretical Motion Physics Planes Point sources Pressure Sound Sound fields Sound Spectrography Time Factors |
title | Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed%20form%20solutions%20for%20the%20acoustical%20impulse%20response%20over%20a%20masslike%20or%20an%20absorbing%20plane&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Ochmann,%20Martin&rft.date=2011-06-01&rft.volume=129&rft.issue=6&rft.spage=3502&rft.epage=3512&rft.pages=3502-3512&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.3570947&rft_dat=%3Cproquest_cross%3E896218766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873124856&rft_id=info:pmid/21682377&rfr_iscdi=true |