Distribution feeder reconfiguration for load balancing and service restoration by using G-nets inference mechanism

In this paper, the customer information in customer information systems (CIS) and information of customer and distribution transformers in outage management information systems (OMIS) in Taiwan Power Company (Taipower), are used to determine the daily load patterns of service areas, sectionalizing s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2004-07, Vol.19 (3), p.1426-1433
1. Verfasser: Ke, Y.-L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1433
container_issue 3
container_start_page 1426
container_title IEEE transactions on power delivery
container_volume 19
creator Ke, Y.-L.
description In this paper, the customer information in customer information systems (CIS) and information of customer and distribution transformers in outage management information systems (OMIS) in Taiwan Power Company (Taipower), are used to determine the daily load patterns of service areas, sectionalizing switches, distribution feeders, and main transformers. During system normal operation conditions, the feeder reconfiguration for load balancing among distribution feeders is obtained by the G-Nets inference mechanism to enhance the operation performance of distribution systems. For distribution contingencies, such as feeder overloading and/or short-circuit fault, the G-Nets inference mechanism with operation rules is applied to derive the optimal switching operation decision for service restoration to perform the optimal load transfer among distribution feeders after the fault has been identified and isolated. To determine the effectiveness of the proposed methodology, a practical Taiwan power distribution system with daily load patterns derived by load survey study is selected to perform the computer simulation. It is found that the G-Nets inference mechanism approach can enhance the solution process of fault restoration with proper load transfer and improve feeder load balancing for distribution systems by considering the load characteristics of the service customers.
doi_str_mv 10.1109/TPWRD.2004.829156
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896217139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1308376</ieee_id><sourcerecordid>2426870151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d857537ade6516176d398a889d1984a8fa58d0f95df7dfcba1a85c4f980271053</originalsourceid><addsrcrecordid>eNp90U1rHDEMBmATWug27Q8ouQw9NKfZ-mM8lo8l3xBoKSk9Gq8tpw67dmrPFPLv480ECjnkJBCPhMRLyCdG14xR_fXmx--fp2tO6bAGrpkcD8iKaaH6gVN4Q1YUQPaglXpH3td6Rxukmq5IOY11KnEzTzGnLiB6LF1Bl1OIt3OxSzuXbput7zZ2a5OL6bazyXcVy7_osPE65We6eejmugcXfcKpdjEFLJia2qH7Y1Osuw_kbbDbih-f6yH5dX52c3LZX3-_uDr5dt07IcXUe5BKCmU9jpKNTI1eaLAA2jMNg4VgJXgatPRB-eA2llmQbggaKFeMSnFIjpe99yX_nduNZherw217AfNcDeiRM8WEbvLLq5IDh3EcWIOfX8C7PJfUvjAAAjgXUjXEFuRKrrVgMPcl7mx5MIyafVjmKSyzD8ssYbWZo2UmIuJ_LygINYpHj32R7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883822357</pqid></control><display><type>article</type><title>Distribution feeder reconfiguration for load balancing and service restoration by using G-nets inference mechanism</title><source>IEEE Electronic Library (IEL)</source><creator>Ke, Y.-L.</creator><creatorcontrib>Ke, Y.-L.</creatorcontrib><description>In this paper, the customer information in customer information systems (CIS) and information of customer and distribution transformers in outage management information systems (OMIS) in Taiwan Power Company (Taipower), are used to determine the daily load patterns of service areas, sectionalizing switches, distribution feeders, and main transformers. During system normal operation conditions, the feeder reconfiguration for load balancing among distribution feeders is obtained by the G-Nets inference mechanism to enhance the operation performance of distribution systems. For distribution contingencies, such as feeder overloading and/or short-circuit fault, the G-Nets inference mechanism with operation rules is applied to derive the optimal switching operation decision for service restoration to perform the optimal load transfer among distribution feeders after the fault has been identified and isolated. To determine the effectiveness of the proposed methodology, a practical Taiwan power distribution system with daily load patterns derived by load survey study is selected to perform the computer simulation. It is found that the G-Nets inference mechanism approach can enhance the solution process of fault restoration with proper load transfer and improve feeder load balancing for distribution systems by considering the load characteristics of the service customers.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2004.829156</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational Intelligence Society ; Computer simulation ; Customer satisfaction ; Electric utilities ; Fault diagnosis ; Faults ; Feeders ; Inference ; Inference mechanisms ; Load balancing ; Load balancing (computing) ; Load management ; Management information systems ; Power distribution ; Power system restoration ; Stress concentration ; Studies ; Switches ; Transformers</subject><ispartof>IEEE transactions on power delivery, 2004-07, Vol.19 (3), p.1426-1433</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d857537ade6516176d398a889d1984a8fa58d0f95df7dfcba1a85c4f980271053</citedby><cites>FETCH-LOGICAL-c353t-d857537ade6516176d398a889d1984a8fa58d0f95df7dfcba1a85c4f980271053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1308376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1308376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ke, Y.-L.</creatorcontrib><title>Distribution feeder reconfiguration for load balancing and service restoration by using G-nets inference mechanism</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>In this paper, the customer information in customer information systems (CIS) and information of customer and distribution transformers in outage management information systems (OMIS) in Taiwan Power Company (Taipower), are used to determine the daily load patterns of service areas, sectionalizing switches, distribution feeders, and main transformers. During system normal operation conditions, the feeder reconfiguration for load balancing among distribution feeders is obtained by the G-Nets inference mechanism to enhance the operation performance of distribution systems. For distribution contingencies, such as feeder overloading and/or short-circuit fault, the G-Nets inference mechanism with operation rules is applied to derive the optimal switching operation decision for service restoration to perform the optimal load transfer among distribution feeders after the fault has been identified and isolated. To determine the effectiveness of the proposed methodology, a practical Taiwan power distribution system with daily load patterns derived by load survey study is selected to perform the computer simulation. It is found that the G-Nets inference mechanism approach can enhance the solution process of fault restoration with proper load transfer and improve feeder load balancing for distribution systems by considering the load characteristics of the service customers.</description><subject>Computational Intelligence Society</subject><subject>Computer simulation</subject><subject>Customer satisfaction</subject><subject>Electric utilities</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Feeders</subject><subject>Inference</subject><subject>Inference mechanisms</subject><subject>Load balancing</subject><subject>Load balancing (computing)</subject><subject>Load management</subject><subject>Management information systems</subject><subject>Power distribution</subject><subject>Power system restoration</subject><subject>Stress concentration</subject><subject>Studies</subject><subject>Switches</subject><subject>Transformers</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U1rHDEMBmATWug27Q8ouQw9NKfZ-mM8lo8l3xBoKSk9Gq8tpw67dmrPFPLv480ECjnkJBCPhMRLyCdG14xR_fXmx--fp2tO6bAGrpkcD8iKaaH6gVN4Q1YUQPaglXpH3td6Rxukmq5IOY11KnEzTzGnLiB6LF1Bl1OIt3OxSzuXbput7zZ2a5OL6bazyXcVy7_osPE65We6eejmugcXfcKpdjEFLJia2qH7Y1Osuw_kbbDbih-f6yH5dX52c3LZX3-_uDr5dt07IcXUe5BKCmU9jpKNTI1eaLAA2jMNg4VgJXgatPRB-eA2llmQbggaKFeMSnFIjpe99yX_nduNZherw217AfNcDeiRM8WEbvLLq5IDh3EcWIOfX8C7PJfUvjAAAjgXUjXEFuRKrrVgMPcl7mx5MIyafVjmKSyzD8ssYbWZo2UmIuJ_LygINYpHj32R7A</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Ke, Y.-L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20040701</creationdate><title>Distribution feeder reconfiguration for load balancing and service restoration by using G-nets inference mechanism</title><author>Ke, Y.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d857537ade6516176d398a889d1984a8fa58d0f95df7dfcba1a85c4f980271053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computational Intelligence Society</topic><topic>Computer simulation</topic><topic>Customer satisfaction</topic><topic>Electric utilities</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Feeders</topic><topic>Inference</topic><topic>Inference mechanisms</topic><topic>Load balancing</topic><topic>Load balancing (computing)</topic><topic>Load management</topic><topic>Management information systems</topic><topic>Power distribution</topic><topic>Power system restoration</topic><topic>Stress concentration</topic><topic>Studies</topic><topic>Switches</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Y.-L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ke, Y.-L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution feeder reconfiguration for load balancing and service restoration by using G-nets inference mechanism</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2004-07-01</date><risdate>2004</risdate><volume>19</volume><issue>3</issue><spage>1426</spage><epage>1433</epage><pages>1426-1433</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>In this paper, the customer information in customer information systems (CIS) and information of customer and distribution transformers in outage management information systems (OMIS) in Taiwan Power Company (Taipower), are used to determine the daily load patterns of service areas, sectionalizing switches, distribution feeders, and main transformers. During system normal operation conditions, the feeder reconfiguration for load balancing among distribution feeders is obtained by the G-Nets inference mechanism to enhance the operation performance of distribution systems. For distribution contingencies, such as feeder overloading and/or short-circuit fault, the G-Nets inference mechanism with operation rules is applied to derive the optimal switching operation decision for service restoration to perform the optimal load transfer among distribution feeders after the fault has been identified and isolated. To determine the effectiveness of the proposed methodology, a practical Taiwan power distribution system with daily load patterns derived by load survey study is selected to perform the computer simulation. It is found that the G-Nets inference mechanism approach can enhance the solution process of fault restoration with proper load transfer and improve feeder load balancing for distribution systems by considering the load characteristics of the service customers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2004.829156</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2004-07, Vol.19 (3), p.1426-1433
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_miscellaneous_896217139
source IEEE Electronic Library (IEL)
subjects Computational Intelligence Society
Computer simulation
Customer satisfaction
Electric utilities
Fault diagnosis
Faults
Feeders
Inference
Inference mechanisms
Load balancing
Load balancing (computing)
Load management
Management information systems
Power distribution
Power system restoration
Stress concentration
Studies
Switches
Transformers
title Distribution feeder reconfiguration for load balancing and service restoration by using G-nets inference mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20feeder%20reconfiguration%20for%20load%20balancing%20and%20service%20restoration%20by%20using%20G-nets%20inference%20mechanism&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Ke,%20Y.-L.&rft.date=2004-07-01&rft.volume=19&rft.issue=3&rft.spage=1426&rft.epage=1433&rft.pages=1426-1433&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2004.829156&rft_dat=%3Cproquest_RIE%3E2426870151%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883822357&rft_id=info:pmid/&rft_ieee_id=1308376&rfr_iscdi=true