Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation

Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food engineering 2008-09, Vol.88 (2), p.239-253
Hauptverfasser: Igathinathane, C., Chattopadhyay, P.K., Pordesimo, L.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 2
container_start_page 239
container_title Journal of food engineering
container_volume 88
creator Igathinathane, C.
Chattopadhyay, P.K.
Pordesimo, L.O.
description Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion during tempering and established the effect of vacuum in tempering acceleration. Experimental procedure reported already is essentially a double-pass drying (90 and 75 °C) of parboiled paddy with tempering stage at a critical moisture content (20.48% d.b.), where the moisture equilibration is accelerated by the application of vacuum (0–700 mm of Hg vacuum gauge). Boundary conditions of previously developed drying model were appropriately modified to model the tempering process. A supplemental fixed boundary condition with the regular derivative boundary condition and incorporation of tempering diffusivity factor modeled the tempering process and explained the effect of vacuum in tempering acceleration. Analysis of moisture history of nodes indicated that starch component moisture moved towards husk through bran component and the moisture profiles clearly demonstrated the effect of vacuum in temperature acceleration. An exponential relationship ( R 2 = 0.9813) adequately modeled the variation of diffusivity factor with the applied vacuum in accelerated tempering. The developed tempering model with drying model can simulate any multi-pass drying processes as well as help perform sensitivity analysis on factors, design equipment, and optimize operations.
doi_str_mv 10.1016/j.jfoodeng.2008.02.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896214538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0260877408000769</els_id><sourcerecordid>896214538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c6eb7f0c2995f0833cc78a3e3e2e6be3c19b9efcda68ecde374c9dafc02d6fcd3</originalsourceid><addsrcrecordid>eNqFkM2O1DAQhCPESgy7vALkgjgltO38ODfQij9p0R5gz5an3R48SuJgO8C8wD43DrNw5WSr-qtyu4riOYOaAeteH-uj9d7QfKg5gKyB18CaR8WOyV5Ubd_D42IHvINK9n3zpHga4xEAWuB8V9x_9i6mNVBpnLVrdH4upxw2uvlQelsuOuy9G8nkmzGnUiPSSEGnrCSaFgobuASPFGP506VvJf1KNJs818syOtRpy0y-nNYxuWrRmTPhtNmiy9qf-VVxYfUY6dnDeVncvX_39fpjdXP74dP125sKxSBThR3tewvIh6G1IIVA7KUWJIhTtyeBbNgPZNHoThIaEn2Dg9EWgZsuy-KyeHXOzRt_XykmNbmYfzTqmfwalRw6zppWyEx2ZxKDjzGQVUtwkw4nxUBtvauj-tu72npXwFXuPRtfPjyhI-rRBj2ji__cHETTcMYy9-LMWe2VPoTM3H3hwETOkoNsRSbenAnKjfxwFFRERzOScYEwKePd_5b5De7Xq1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896214538</pqid></control><display><type>article</type><title>Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation</title><source>Elsevier ScienceDirect Journals</source><creator>Igathinathane, C. ; Chattopadhyay, P.K. ; Pordesimo, L.O.</creator><creatorcontrib>Igathinathane, C. ; Chattopadhyay, P.K. ; Pordesimo, L.O.</creatorcontrib><description>Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion during tempering and established the effect of vacuum in tempering acceleration. Experimental procedure reported already is essentially a double-pass drying (90 and 75 °C) of parboiled paddy with tempering stage at a critical moisture content (20.48% d.b.), where the moisture equilibration is accelerated by the application of vacuum (0–700 mm of Hg vacuum gauge). Boundary conditions of previously developed drying model were appropriately modified to model the tempering process. A supplemental fixed boundary condition with the regular derivative boundary condition and incorporation of tempering diffusivity factor modeled the tempering process and explained the effect of vacuum in tempering acceleration. Analysis of moisture history of nodes indicated that starch component moisture moved towards husk through bran component and the moisture profiles clearly demonstrated the effect of vacuum in temperature acceleration. An exponential relationship ( R 2 = 0.9813) adequately modeled the variation of diffusivity factor with the applied vacuum in accelerated tempering. The developed tempering model with drying model can simulate any multi-pass drying processes as well as help perform sensitivity analysis on factors, design equipment, and optimize operations.</description><identifier>ISSN: 0260-8774</identifier><identifier>EISSN: 1873-5770</identifier><identifier>DOI: 10.1016/j.jfoodeng.2008.02.014</identifier><identifier>CODEN: JFOEDH</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acceleration ; Biological and medical sciences ; Boundary conditions ; Computer simulation ; Diffusion ; diffusivity ; dry milling ; Drying ; drying temperature ; dynamic programming ; finite element analysis ; Food engineering ; Food industries ; Fundamental and applied biological sciences. Psychology ; General aspects ; mass flow ; mass transfer ; Mathematical model ; Mathematical models ; milling quality ; Moisture ; Paddy ; parboiling ; Prolate spheroid ; rough rice ; Tempering ; Vacuum ; vacuum drying ; water activity ; water content</subject><ispartof>Journal of food engineering, 2008-09, Vol.88 (2), p.239-253</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-c6eb7f0c2995f0833cc78a3e3e2e6be3c19b9efcda68ecde374c9dafc02d6fcd3</citedby><cites>FETCH-LOGICAL-c398t-c6eb7f0c2995f0833cc78a3e3e2e6be3c19b9efcda68ecde374c9dafc02d6fcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfoodeng.2008.02.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20344211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Igathinathane, C.</creatorcontrib><creatorcontrib>Chattopadhyay, P.K.</creatorcontrib><creatorcontrib>Pordesimo, L.O.</creatorcontrib><title>Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation</title><title>Journal of food engineering</title><description>Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion during tempering and established the effect of vacuum in tempering acceleration. Experimental procedure reported already is essentially a double-pass drying (90 and 75 °C) of parboiled paddy with tempering stage at a critical moisture content (20.48% d.b.), where the moisture equilibration is accelerated by the application of vacuum (0–700 mm of Hg vacuum gauge). Boundary conditions of previously developed drying model were appropriately modified to model the tempering process. A supplemental fixed boundary condition with the regular derivative boundary condition and incorporation of tempering diffusivity factor modeled the tempering process and explained the effect of vacuum in tempering acceleration. Analysis of moisture history of nodes indicated that starch component moisture moved towards husk through bran component and the moisture profiles clearly demonstrated the effect of vacuum in temperature acceleration. An exponential relationship ( R 2 = 0.9813) adequately modeled the variation of diffusivity factor with the applied vacuum in accelerated tempering. The developed tempering model with drying model can simulate any multi-pass drying processes as well as help perform sensitivity analysis on factors, design equipment, and optimize operations.</description><subject>Acceleration</subject><subject>Biological and medical sciences</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>diffusivity</subject><subject>dry milling</subject><subject>Drying</subject><subject>drying temperature</subject><subject>dynamic programming</subject><subject>finite element analysis</subject><subject>Food engineering</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>mass flow</subject><subject>mass transfer</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>milling quality</subject><subject>Moisture</subject><subject>Paddy</subject><subject>parboiling</subject><subject>Prolate spheroid</subject><subject>rough rice</subject><subject>Tempering</subject><subject>Vacuum</subject><subject>vacuum drying</subject><subject>water activity</subject><subject>water content</subject><issn>0260-8774</issn><issn>1873-5770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkM2O1DAQhCPESgy7vALkgjgltO38ODfQij9p0R5gz5an3R48SuJgO8C8wD43DrNw5WSr-qtyu4riOYOaAeteH-uj9d7QfKg5gKyB18CaR8WOyV5Ubd_D42IHvINK9n3zpHga4xEAWuB8V9x_9i6mNVBpnLVrdH4upxw2uvlQelsuOuy9G8nkmzGnUiPSSEGnrCSaFgobuASPFGP506VvJf1KNJs818syOtRpy0y-nNYxuWrRmTPhtNmiy9qf-VVxYfUY6dnDeVncvX_39fpjdXP74dP125sKxSBThR3tewvIh6G1IIVA7KUWJIhTtyeBbNgPZNHoThIaEn2Dg9EWgZsuy-KyeHXOzRt_XykmNbmYfzTqmfwalRw6zppWyEx2ZxKDjzGQVUtwkw4nxUBtvauj-tu72npXwFXuPRtfPjyhI-rRBj2ji__cHETTcMYy9-LMWe2VPoTM3H3hwETOkoNsRSbenAnKjfxwFFRERzOScYEwKePd_5b5De7Xq1g</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Igathinathane, C.</creator><creator>Chattopadhyay, P.K.</creator><creator>Pordesimo, L.O.</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Science Pub. Co</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080901</creationdate><title>Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation</title><author>Igathinathane, C. ; Chattopadhyay, P.K. ; Pordesimo, L.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c6eb7f0c2995f0833cc78a3e3e2e6be3c19b9efcda68ecde374c9dafc02d6fcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Biological and medical sciences</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>diffusivity</topic><topic>dry milling</topic><topic>Drying</topic><topic>drying temperature</topic><topic>dynamic programming</topic><topic>finite element analysis</topic><topic>Food engineering</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>mass flow</topic><topic>mass transfer</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>milling quality</topic><topic>Moisture</topic><topic>Paddy</topic><topic>parboiling</topic><topic>Prolate spheroid</topic><topic>rough rice</topic><topic>Tempering</topic><topic>Vacuum</topic><topic>vacuum drying</topic><topic>water activity</topic><topic>water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igathinathane, C.</creatorcontrib><creatorcontrib>Chattopadhyay, P.K.</creatorcontrib><creatorcontrib>Pordesimo, L.O.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of food engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igathinathane, C.</au><au>Chattopadhyay, P.K.</au><au>Pordesimo, L.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation</atitle><jtitle>Journal of food engineering</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>88</volume><issue>2</issue><spage>239</spage><epage>253</epage><pages>239-253</pages><issn>0260-8774</issn><eissn>1873-5770</eissn><coden>JFOEDH</coden><abstract>Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion during tempering and established the effect of vacuum in tempering acceleration. Experimental procedure reported already is essentially a double-pass drying (90 and 75 °C) of parboiled paddy with tempering stage at a critical moisture content (20.48% d.b.), where the moisture equilibration is accelerated by the application of vacuum (0–700 mm of Hg vacuum gauge). Boundary conditions of previously developed drying model were appropriately modified to model the tempering process. A supplemental fixed boundary condition with the regular derivative boundary condition and incorporation of tempering diffusivity factor modeled the tempering process and explained the effect of vacuum in tempering acceleration. Analysis of moisture history of nodes indicated that starch component moisture moved towards husk through bran component and the moisture profiles clearly demonstrated the effect of vacuum in temperature acceleration. An exponential relationship ( R 2 = 0.9813) adequately modeled the variation of diffusivity factor with the applied vacuum in accelerated tempering. The developed tempering model with drying model can simulate any multi-pass drying processes as well as help perform sensitivity analysis on factors, design equipment, and optimize operations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfoodeng.2008.02.014</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0260-8774
ispartof Journal of food engineering, 2008-09, Vol.88 (2), p.239-253
issn 0260-8774
1873-5770
language eng
recordid cdi_proquest_miscellaneous_896214538
source Elsevier ScienceDirect Journals
subjects Acceleration
Biological and medical sciences
Boundary conditions
Computer simulation
Diffusion
diffusivity
dry milling
Drying
drying temperature
dynamic programming
finite element analysis
Food engineering
Food industries
Fundamental and applied biological sciences. Psychology
General aspects
mass flow
mass transfer
Mathematical model
Mathematical models
milling quality
Moisture
Paddy
parboiling
Prolate spheroid
rough rice
Tempering
Vacuum
vacuum drying
water activity
water content
title Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moisture%20diffusion%20modeling%20of%20parboiled%20paddy%20accelerated%20tempering%20process%20with%20extended%20application%20to%20multi-pass%20drying%20simulation&rft.jtitle=Journal%20of%20food%20engineering&rft.au=Igathinathane,%20C.&rft.date=2008-09-01&rft.volume=88&rft.issue=2&rft.spage=239&rft.epage=253&rft.pages=239-253&rft.issn=0260-8774&rft.eissn=1873-5770&rft.coden=JFOEDH&rft_id=info:doi/10.1016/j.jfoodeng.2008.02.014&rft_dat=%3Cproquest_cross%3E896214538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896214538&rft_id=info:pmid/&rft_els_id=S0260877408000769&rfr_iscdi=true