Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation
Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion du...
Gespeichert in:
Veröffentlicht in: | Journal of food engineering 2008-09, Vol.88 (2), p.239-253 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 2 |
container_start_page | 239 |
container_title | Journal of food engineering |
container_volume | 88 |
creator | Igathinathane, C. Chattopadhyay, P.K. Pordesimo, L.O. |
description | Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion during tempering and established the effect of vacuum in tempering acceleration. Experimental procedure reported already is essentially a double-pass drying (90 and 75
°C) of parboiled paddy with tempering stage at a critical moisture content (20.48% d.b.), where the moisture equilibration is accelerated by the application of vacuum (0–700
mm of Hg vacuum gauge). Boundary conditions of previously developed drying model were appropriately modified to model the tempering process. A supplemental fixed boundary condition with the regular derivative boundary condition and incorporation of tempering diffusivity factor modeled the tempering process and explained the effect of vacuum in tempering acceleration. Analysis of moisture history of nodes indicated that starch component moisture moved towards husk through bran component and the moisture profiles clearly demonstrated the effect of vacuum in temperature acceleration. An exponential relationship (
R
2
=
0.9813) adequately modeled the variation of diffusivity factor with the applied vacuum in accelerated tempering. The developed tempering model with drying model can simulate any multi-pass drying processes as well as help perform sensitivity analysis on factors, design equipment, and optimize operations. |
doi_str_mv | 10.1016/j.jfoodeng.2008.02.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896214538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0260877408000769</els_id><sourcerecordid>896214538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c6eb7f0c2995f0833cc78a3e3e2e6be3c19b9efcda68ecde374c9dafc02d6fcd3</originalsourceid><addsrcrecordid>eNqFkM2O1DAQhCPESgy7vALkgjgltO38ODfQij9p0R5gz5an3R48SuJgO8C8wD43DrNw5WSr-qtyu4riOYOaAeteH-uj9d7QfKg5gKyB18CaR8WOyV5Ubd_D42IHvINK9n3zpHga4xEAWuB8V9x_9i6mNVBpnLVrdH4upxw2uvlQelsuOuy9G8nkmzGnUiPSSEGnrCSaFgobuASPFGP506VvJf1KNJs818syOtRpy0y-nNYxuWrRmTPhtNmiy9qf-VVxYfUY6dnDeVncvX_39fpjdXP74dP125sKxSBThR3tewvIh6G1IIVA7KUWJIhTtyeBbNgPZNHoThIaEn2Dg9EWgZsuy-KyeHXOzRt_XykmNbmYfzTqmfwalRw6zppWyEx2ZxKDjzGQVUtwkw4nxUBtvauj-tu72npXwFXuPRtfPjyhI-rRBj2ji__cHETTcMYy9-LMWe2VPoTM3H3hwETOkoNsRSbenAnKjfxwFFRERzOScYEwKePd_5b5De7Xq1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896214538</pqid></control><display><type>article</type><title>Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation</title><source>Elsevier ScienceDirect Journals</source><creator>Igathinathane, C. ; Chattopadhyay, P.K. ; Pordesimo, L.O.</creator><creatorcontrib>Igathinathane, C. ; Chattopadhyay, P.K. ; Pordesimo, L.O.</creatorcontrib><description>Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion during tempering and established the effect of vacuum in tempering acceleration. Experimental procedure reported already is essentially a double-pass drying (90 and 75
°C) of parboiled paddy with tempering stage at a critical moisture content (20.48% d.b.), where the moisture equilibration is accelerated by the application of vacuum (0–700
mm of Hg vacuum gauge). Boundary conditions of previously developed drying model were appropriately modified to model the tempering process. A supplemental fixed boundary condition with the regular derivative boundary condition and incorporation of tempering diffusivity factor modeled the tempering process and explained the effect of vacuum in tempering acceleration. Analysis of moisture history of nodes indicated that starch component moisture moved towards husk through bran component and the moisture profiles clearly demonstrated the effect of vacuum in temperature acceleration. An exponential relationship (
R
2
=
0.9813) adequately modeled the variation of diffusivity factor with the applied vacuum in accelerated tempering. The developed tempering model with drying model can simulate any multi-pass drying processes as well as help perform sensitivity analysis on factors, design equipment, and optimize operations.</description><identifier>ISSN: 0260-8774</identifier><identifier>EISSN: 1873-5770</identifier><identifier>DOI: 10.1016/j.jfoodeng.2008.02.014</identifier><identifier>CODEN: JFOEDH</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acceleration ; Biological and medical sciences ; Boundary conditions ; Computer simulation ; Diffusion ; diffusivity ; dry milling ; Drying ; drying temperature ; dynamic programming ; finite element analysis ; Food engineering ; Food industries ; Fundamental and applied biological sciences. Psychology ; General aspects ; mass flow ; mass transfer ; Mathematical model ; Mathematical models ; milling quality ; Moisture ; Paddy ; parboiling ; Prolate spheroid ; rough rice ; Tempering ; Vacuum ; vacuum drying ; water activity ; water content</subject><ispartof>Journal of food engineering, 2008-09, Vol.88 (2), p.239-253</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-c6eb7f0c2995f0833cc78a3e3e2e6be3c19b9efcda68ecde374c9dafc02d6fcd3</citedby><cites>FETCH-LOGICAL-c398t-c6eb7f0c2995f0833cc78a3e3e2e6be3c19b9efcda68ecde374c9dafc02d6fcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfoodeng.2008.02.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20344211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Igathinathane, C.</creatorcontrib><creatorcontrib>Chattopadhyay, P.K.</creatorcontrib><creatorcontrib>Pordesimo, L.O.</creatorcontrib><title>Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation</title><title>Journal of food engineering</title><description>Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion during tempering and established the effect of vacuum in tempering acceleration. Experimental procedure reported already is essentially a double-pass drying (90 and 75
°C) of parboiled paddy with tempering stage at a critical moisture content (20.48% d.b.), where the moisture equilibration is accelerated by the application of vacuum (0–700
mm of Hg vacuum gauge). Boundary conditions of previously developed drying model were appropriately modified to model the tempering process. A supplemental fixed boundary condition with the regular derivative boundary condition and incorporation of tempering diffusivity factor modeled the tempering process and explained the effect of vacuum in tempering acceleration. Analysis of moisture history of nodes indicated that starch component moisture moved towards husk through bran component and the moisture profiles clearly demonstrated the effect of vacuum in temperature acceleration. An exponential relationship (
R
2
=
0.9813) adequately modeled the variation of diffusivity factor with the applied vacuum in accelerated tempering. The developed tempering model with drying model can simulate any multi-pass drying processes as well as help perform sensitivity analysis on factors, design equipment, and optimize operations.</description><subject>Acceleration</subject><subject>Biological and medical sciences</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>diffusivity</subject><subject>dry milling</subject><subject>Drying</subject><subject>drying temperature</subject><subject>dynamic programming</subject><subject>finite element analysis</subject><subject>Food engineering</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>mass flow</subject><subject>mass transfer</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>milling quality</subject><subject>Moisture</subject><subject>Paddy</subject><subject>parboiling</subject><subject>Prolate spheroid</subject><subject>rough rice</subject><subject>Tempering</subject><subject>Vacuum</subject><subject>vacuum drying</subject><subject>water activity</subject><subject>water content</subject><issn>0260-8774</issn><issn>1873-5770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkM2O1DAQhCPESgy7vALkgjgltO38ODfQij9p0R5gz5an3R48SuJgO8C8wD43DrNw5WSr-qtyu4riOYOaAeteH-uj9d7QfKg5gKyB18CaR8WOyV5Ubd_D42IHvINK9n3zpHga4xEAWuB8V9x_9i6mNVBpnLVrdH4upxw2uvlQelsuOuy9G8nkmzGnUiPSSEGnrCSaFgobuASPFGP506VvJf1KNJs818syOtRpy0y-nNYxuWrRmTPhtNmiy9qf-VVxYfUY6dnDeVncvX_39fpjdXP74dP125sKxSBThR3tewvIh6G1IIVA7KUWJIhTtyeBbNgPZNHoThIaEn2Dg9EWgZsuy-KyeHXOzRt_XykmNbmYfzTqmfwalRw6zppWyEx2ZxKDjzGQVUtwkw4nxUBtvauj-tu72npXwFXuPRtfPjyhI-rRBj2ji__cHETTcMYy9-LMWe2VPoTM3H3hwETOkoNsRSbenAnKjfxwFFRERzOScYEwKePd_5b5De7Xq1g</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Igathinathane, C.</creator><creator>Chattopadhyay, P.K.</creator><creator>Pordesimo, L.O.</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Science Pub. Co</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080901</creationdate><title>Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation</title><author>Igathinathane, C. ; Chattopadhyay, P.K. ; Pordesimo, L.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c6eb7f0c2995f0833cc78a3e3e2e6be3c19b9efcda68ecde374c9dafc02d6fcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Biological and medical sciences</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>diffusivity</topic><topic>dry milling</topic><topic>Drying</topic><topic>drying temperature</topic><topic>dynamic programming</topic><topic>finite element analysis</topic><topic>Food engineering</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>mass flow</topic><topic>mass transfer</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>milling quality</topic><topic>Moisture</topic><topic>Paddy</topic><topic>parboiling</topic><topic>Prolate spheroid</topic><topic>rough rice</topic><topic>Tempering</topic><topic>Vacuum</topic><topic>vacuum drying</topic><topic>water activity</topic><topic>water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igathinathane, C.</creatorcontrib><creatorcontrib>Chattopadhyay, P.K.</creatorcontrib><creatorcontrib>Pordesimo, L.O.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of food engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igathinathane, C.</au><au>Chattopadhyay, P.K.</au><au>Pordesimo, L.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation</atitle><jtitle>Journal of food engineering</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>88</volume><issue>2</issue><spage>239</spage><epage>253</epage><pages>239-253</pages><issn>0260-8774</issn><eissn>1873-5770</eissn><coden>JFOEDH</coden><abstract>Parboiled paddy grain tempering process, often employed in multi-pass drying for milling quality improvement, is theoretically modeled considering a multi-component prolate spheroid geometry in prolate spheroidal coordinate system. The finite difference formulation analyzed the moisture diffusion during tempering and established the effect of vacuum in tempering acceleration. Experimental procedure reported already is essentially a double-pass drying (90 and 75
°C) of parboiled paddy with tempering stage at a critical moisture content (20.48% d.b.), where the moisture equilibration is accelerated by the application of vacuum (0–700
mm of Hg vacuum gauge). Boundary conditions of previously developed drying model were appropriately modified to model the tempering process. A supplemental fixed boundary condition with the regular derivative boundary condition and incorporation of tempering diffusivity factor modeled the tempering process and explained the effect of vacuum in tempering acceleration. Analysis of moisture history of nodes indicated that starch component moisture moved towards husk through bran component and the moisture profiles clearly demonstrated the effect of vacuum in temperature acceleration. An exponential relationship (
R
2
=
0.9813) adequately modeled the variation of diffusivity factor with the applied vacuum in accelerated tempering. The developed tempering model with drying model can simulate any multi-pass drying processes as well as help perform sensitivity analysis on factors, design equipment, and optimize operations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfoodeng.2008.02.014</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0260-8774 |
ispartof | Journal of food engineering, 2008-09, Vol.88 (2), p.239-253 |
issn | 0260-8774 1873-5770 |
language | eng |
recordid | cdi_proquest_miscellaneous_896214538 |
source | Elsevier ScienceDirect Journals |
subjects | Acceleration Biological and medical sciences Boundary conditions Computer simulation Diffusion diffusivity dry milling Drying drying temperature dynamic programming finite element analysis Food engineering Food industries Fundamental and applied biological sciences. Psychology General aspects mass flow mass transfer Mathematical model Mathematical models milling quality Moisture Paddy parboiling Prolate spheroid rough rice Tempering Vacuum vacuum drying water activity water content |
title | Moisture diffusion modeling of parboiled paddy accelerated tempering process with extended application to multi-pass drying simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moisture%20diffusion%20modeling%20of%20parboiled%20paddy%20accelerated%20tempering%20process%20with%20extended%20application%20to%20multi-pass%20drying%20simulation&rft.jtitle=Journal%20of%20food%20engineering&rft.au=Igathinathane,%20C.&rft.date=2008-09-01&rft.volume=88&rft.issue=2&rft.spage=239&rft.epage=253&rft.pages=239-253&rft.issn=0260-8774&rft.eissn=1873-5770&rft.coden=JFOEDH&rft_id=info:doi/10.1016/j.jfoodeng.2008.02.014&rft_dat=%3Cproquest_cross%3E896214538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896214538&rft_id=info:pmid/&rft_els_id=S0260877408000769&rfr_iscdi=true |