Improved artificial bee colony algorithm for global optimization

The artificial bee colony algorithm is a relatively new optimization technique. This paper presents an improved artificial bee colony (IABC) algorithm for global optimization. Inspired by differential evolution (DE) and introducing a parameter M, we propose two improved solution search equations, na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2011-09, Vol.111 (17), p.871-882
Hauptverfasser: Gao, Weifeng, Liu, Sanyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 17
container_start_page 871
container_title Information processing letters
container_volume 111
creator Gao, Weifeng
Liu, Sanyang
description The artificial bee colony algorithm is a relatively new optimization technique. This paper presents an improved artificial bee colony (IABC) algorithm for global optimization. Inspired by differential evolution (DE) and introducing a parameter M, we propose two improved solution search equations, namely “ ABC/best/1” and “ ABC/rand/1”. Then, in order to take advantage of them and avoid the shortages of them, we use a selective probability p to control the frequency of introducing “ ABC/rand/1” and “ ABC/best/1” and get a new search mechanism. In addition, to enhance the global convergence speed, when producing the initial population, both the chaotic systems and the opposition-based learning method are employed. Experiments are conducted on a suite of unimodal/multimodal benchmark functions. The results demonstrate the good performance of the IABC algorithm in solving complex numerical optimization problems when compared with thirteen recent algorithms. ► “ ABC/best/1” and “ ABC/rand/1” are proposed. ► A new search mechanism is got by introducing a selective probability p. ► Both opposition-based learning method and chaotic maps are employed. ► The experiment results demonstrate the good performance of the IABC algorithm.
doi_str_mv 10.1016/j.ipl.2011.06.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896212768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019011001670</els_id><sourcerecordid>896212768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-916e6b7f5a764fbd675a5d86ace4eb24bf187a888209e0de224ee0dc50c47fba3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG9FEE-tk9gmLV4U8WNB8KLnkKaTNSVt1qQr6K83yy4ePHgamHlm5uUh5JRCQYHyy76wK1cwoLQAXgCwPTKjtWA5p7TZJ7PUgRxoA4fkKMYeAHh5JWbkZjGsgv_ELlNhssZqq1zWImbaOz9-ZcotfbDT-5AZH7Kl822a-9VkB_utJuvHY3JglIt4sqtz8vZw_3r3lD-_PC7ubp9zXVZsyhvKkbfCVErw0rQdF5WquporjSW2rGxNSqvqumbQIHTIWImp6gp0KUyrrubkYns3xf1YY5zkYKNG59SIfh1l3XBGmeB1Is_-kL1fhzGFk7UQiROMJohuIR18jAGNXAU7qPAlKciNUdnLZFRujErgMvlLO-e7wypq5UxQo7bxd5GVleCs2QS43nKYfHxaDDJqi6PGzgbUk-y8_efLDxV-i1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877896721</pqid></control><display><type>article</type><title>Improved artificial bee colony algorithm for global optimization</title><source>Elsevier ScienceDirect Journals</source><creator>Gao, Weifeng ; Liu, Sanyang</creator><creatorcontrib>Gao, Weifeng ; Liu, Sanyang</creatorcontrib><description>The artificial bee colony algorithm is a relatively new optimization technique. This paper presents an improved artificial bee colony (IABC) algorithm for global optimization. Inspired by differential evolution (DE) and introducing a parameter M, we propose two improved solution search equations, namely “ ABC/best/1” and “ ABC/rand/1”. Then, in order to take advantage of them and avoid the shortages of them, we use a selective probability p to control the frequency of introducing “ ABC/rand/1” and “ ABC/best/1” and get a new search mechanism. In addition, to enhance the global convergence speed, when producing the initial population, both the chaotic systems and the opposition-based learning method are employed. Experiments are conducted on a suite of unimodal/multimodal benchmark functions. The results demonstrate the good performance of the IABC algorithm in solving complex numerical optimization problems when compared with thirteen recent algorithms. ► “ ABC/best/1” and “ ABC/rand/1” are proposed. ► A new search mechanism is got by introducing a selective probability p. ► Both opposition-based learning method and chaotic maps are employed. ► The experiment results demonstrate the good performance of the IABC algorithm.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2011.06.002</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Artificial bee colony algorithm ; Calculus of variations and optimal control ; Colonies ; Computer science; control theory; systems ; Convergence ; Evolution ; Exact sciences and technology ; Initial population ; Learning ; Mathematical analysis ; Mathematical models ; Mathematics ; Miscellaneous ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Optimization ; Optimization algorithms ; Optimization techniques ; Probability distribution ; Randomized algorithms ; Sciences and techniques of general use ; Search mechanism ; Searching ; Solution search equation ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 2011-09, Vol.111 (17), p.871-882</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-916e6b7f5a764fbd675a5d86ace4eb24bf187a888209e0de224ee0dc50c47fba3</citedby><cites>FETCH-LOGICAL-c452t-916e6b7f5a764fbd675a5d86ace4eb24bf187a888209e0de224ee0dc50c47fba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019011001670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24576298$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Weifeng</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><title>Improved artificial bee colony algorithm for global optimization</title><title>Information processing letters</title><description>The artificial bee colony algorithm is a relatively new optimization technique. This paper presents an improved artificial bee colony (IABC) algorithm for global optimization. Inspired by differential evolution (DE) and introducing a parameter M, we propose two improved solution search equations, namely “ ABC/best/1” and “ ABC/rand/1”. Then, in order to take advantage of them and avoid the shortages of them, we use a selective probability p to control the frequency of introducing “ ABC/rand/1” and “ ABC/best/1” and get a new search mechanism. In addition, to enhance the global convergence speed, when producing the initial population, both the chaotic systems and the opposition-based learning method are employed. Experiments are conducted on a suite of unimodal/multimodal benchmark functions. The results demonstrate the good performance of the IABC algorithm in solving complex numerical optimization problems when compared with thirteen recent algorithms. ► “ ABC/best/1” and “ ABC/rand/1” are proposed. ► A new search mechanism is got by introducing a selective probability p. ► Both opposition-based learning method and chaotic maps are employed. ► The experiment results demonstrate the good performance of the IABC algorithm.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial bee colony algorithm</subject><subject>Calculus of variations and optimal control</subject><subject>Colonies</subject><subject>Computer science; control theory; systems</subject><subject>Convergence</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Initial population</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Probability distribution</subject><subject>Randomized algorithms</subject><subject>Sciences and techniques of general use</subject><subject>Search mechanism</subject><subject>Searching</subject><subject>Solution search equation</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG9FEE-tk9gmLV4U8WNB8KLnkKaTNSVt1qQr6K83yy4ePHgamHlm5uUh5JRCQYHyy76wK1cwoLQAXgCwPTKjtWA5p7TZJ7PUgRxoA4fkKMYeAHh5JWbkZjGsgv_ELlNhssZqq1zWImbaOz9-ZcotfbDT-5AZH7Kl822a-9VkB_utJuvHY3JglIt4sqtz8vZw_3r3lD-_PC7ubp9zXVZsyhvKkbfCVErw0rQdF5WquporjSW2rGxNSqvqumbQIHTIWImp6gp0KUyrrubkYns3xf1YY5zkYKNG59SIfh1l3XBGmeB1Is_-kL1fhzGFk7UQiROMJohuIR18jAGNXAU7qPAlKciNUdnLZFRujErgMvlLO-e7wypq5UxQo7bxd5GVleCs2QS43nKYfHxaDDJqi6PGzgbUk-y8_efLDxV-i1k</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Gao, Weifeng</creator><creator>Liu, Sanyang</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110915</creationdate><title>Improved artificial bee colony algorithm for global optimization</title><author>Gao, Weifeng ; Liu, Sanyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-916e6b7f5a764fbd675a5d86ace4eb24bf187a888209e0de224ee0dc50c47fba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial bee colony algorithm</topic><topic>Calculus of variations and optimal control</topic><topic>Colonies</topic><topic>Computer science; control theory; systems</topic><topic>Convergence</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Initial population</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Probability distribution</topic><topic>Randomized algorithms</topic><topic>Sciences and techniques of general use</topic><topic>Search mechanism</topic><topic>Searching</topic><topic>Solution search equation</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Weifeng</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Weifeng</au><au>Liu, Sanyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved artificial bee colony algorithm for global optimization</atitle><jtitle>Information processing letters</jtitle><date>2011-09-15</date><risdate>2011</risdate><volume>111</volume><issue>17</issue><spage>871</spage><epage>882</epage><pages>871-882</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>The artificial bee colony algorithm is a relatively new optimization technique. This paper presents an improved artificial bee colony (IABC) algorithm for global optimization. Inspired by differential evolution (DE) and introducing a parameter M, we propose two improved solution search equations, namely “ ABC/best/1” and “ ABC/rand/1”. Then, in order to take advantage of them and avoid the shortages of them, we use a selective probability p to control the frequency of introducing “ ABC/rand/1” and “ ABC/best/1” and get a new search mechanism. In addition, to enhance the global convergence speed, when producing the initial population, both the chaotic systems and the opposition-based learning method are employed. Experiments are conducted on a suite of unimodal/multimodal benchmark functions. The results demonstrate the good performance of the IABC algorithm in solving complex numerical optimization problems when compared with thirteen recent algorithms. ► “ ABC/best/1” and “ ABC/rand/1” are proposed. ► A new search mechanism is got by introducing a selective probability p. ► Both opposition-based learning method and chaotic maps are employed. ► The experiment results demonstrate the good performance of the IABC algorithm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2011.06.002</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2011-09, Vol.111 (17), p.871-882
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_896212768
source Elsevier ScienceDirect Journals
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial bee colony algorithm
Calculus of variations and optimal control
Colonies
Computer science
control theory
systems
Convergence
Evolution
Exact sciences and technology
Initial population
Learning
Mathematical analysis
Mathematical models
Mathematics
Miscellaneous
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Optimization
Optimization algorithms
Optimization techniques
Probability distribution
Randomized algorithms
Sciences and techniques of general use
Search mechanism
Searching
Solution search equation
Studies
Theoretical computing
title Improved artificial bee colony algorithm for global optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20artificial%20bee%20colony%20algorithm%20for%20global%20optimization&rft.jtitle=Information%20processing%20letters&rft.au=Gao,%20Weifeng&rft.date=2011-09-15&rft.volume=111&rft.issue=17&rft.spage=871&rft.epage=882&rft.pages=871-882&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2011.06.002&rft_dat=%3Cproquest_cross%3E896212768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=877896721&rft_id=info:pmid/&rft_els_id=S0020019011001670&rfr_iscdi=true