Liquid water transport between graphite paper and a solid surface

We studied the interaction of a water droplet with a solid wall on a hydrophobic gas diffusion layer (GDL). Of particular interest is the stability of the droplet as a function of plate wetting properties and the potential for liquid entrapment in the GDL/land contact area. Such transport is of rele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2008-12, Vol.185 (2), p.1147-1153
Hauptverfasser: Bazylak, A., Heinrich, J., Djilali, N., Sinton, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1153
container_issue 2
container_start_page 1147
container_title Journal of power sources
container_volume 185
creator Bazylak, A.
Heinrich, J.
Djilali, N.
Sinton, D.
description We studied the interaction of a water droplet with a solid wall on a hydrophobic gas diffusion layer (GDL). Of particular interest is the stability of the droplet as a function of plate wetting properties and the potential for liquid entrapment in the GDL/land contact area. Such transport is of relevance to breakthrough dynamics and convective liquid droplet transport in polymer electrolyte membrane (PEM) fuel cell cathode gas channels. While a variety of complex coupled transport phenomena are present in the PEM fuel cell gas channel, we utilize a very simplified experimental model of the system where a droplet originally placed on a hydrophobic GDL is translated quasistatically across the GDL surface by a solid surface. Transport and entrapment are imaged using fluorescence microscopy. This work provides new insights into droplet behaviour at the GDL/land interface in a PEM fuel cell and suggests that hydrophobic land areas are preferable for mitigating the accumulation of liquid water under the land area of the gas flow channels.
doi_str_mv 10.1016/j.jpowsour.2008.07.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896211875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775308013906</els_id><sourcerecordid>896211875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-f65ca087a4d386e7ad69ee38db2d02fb5561d6c1305dc7833a7ddcd91a9279d83</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCygbxCrBjutHdlQVL6kSG1hbU3sCrtIktRMq_h5XLWxZzebcubqHkGtGC0aZvFsX677bxW4MRUmpLqgqKGcnZMK04nmphDglE8qVzpUS_JxcxLimlDKm6ITMl347epftYMCQDQHa2HdhyFY47BDb7CNA_-kHzHroEwCtyyCLXZMicQw1WLwkZzU0Ea-Od0reHx_eFs_58vXpZTFf5par2ZDXUligWsHMcS1RgZMVItduVTpa1ishJHPSMk6Fs0pzDso56yoGVakqp_mU3B7-9qHbjhgHs_HRYtNAi90Yja5kydJkkUh5IG3oYgxYmz74DYRvw6jZKzNr86vM7JUZqkxSloI3xwqIFpo62bA-_qVLVgqpxSxx9wcO094vj8FE67G16HxAOxjX-f-qfgAn84ZV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896211875</pqid></control><display><type>article</type><title>Liquid water transport between graphite paper and a solid surface</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bazylak, A. ; Heinrich, J. ; Djilali, N. ; Sinton, D.</creator><creatorcontrib>Bazylak, A. ; Heinrich, J. ; Djilali, N. ; Sinton, D.</creatorcontrib><description>We studied the interaction of a water droplet with a solid wall on a hydrophobic gas diffusion layer (GDL). Of particular interest is the stability of the droplet as a function of plate wetting properties and the potential for liquid entrapment in the GDL/land contact area. Such transport is of relevance to breakthrough dynamics and convective liquid droplet transport in polymer electrolyte membrane (PEM) fuel cell cathode gas channels. While a variety of complex coupled transport phenomena are present in the PEM fuel cell gas channel, we utilize a very simplified experimental model of the system where a droplet originally placed on a hydrophobic GDL is translated quasistatically across the GDL surface by a solid surface. Transport and entrapment are imaged using fluorescence microscopy. This work provides new insights into droplet behaviour at the GDL/land interface in a PEM fuel cell and suggests that hydrophobic land areas are preferable for mitigating the accumulation of liquid water under the land area of the gas flow channels.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2008.07.031</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Channels ; Droplet behaviour ; Droplets ; Dynamics ; Energy ; Energy. Thermal use of fuels ; Entrapment ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Gas channel land area ; Gas diffusion layer ; Hydrophilic ; Hydrophobic ; Land ; Liquids ; Polymer electrolyte membrane fuel cell ; Transport ; Water management</subject><ispartof>Journal of power sources, 2008-12, Vol.185 (2), p.1147-1153</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-f65ca087a4d386e7ad69ee38db2d02fb5561d6c1305dc7833a7ddcd91a9279d83</citedby><cites>FETCH-LOGICAL-c374t-f65ca087a4d386e7ad69ee38db2d02fb5561d6c1305dc7833a7ddcd91a9279d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2008.07.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21256854$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bazylak, A.</creatorcontrib><creatorcontrib>Heinrich, J.</creatorcontrib><creatorcontrib>Djilali, N.</creatorcontrib><creatorcontrib>Sinton, D.</creatorcontrib><title>Liquid water transport between graphite paper and a solid surface</title><title>Journal of power sources</title><description>We studied the interaction of a water droplet with a solid wall on a hydrophobic gas diffusion layer (GDL). Of particular interest is the stability of the droplet as a function of plate wetting properties and the potential for liquid entrapment in the GDL/land contact area. Such transport is of relevance to breakthrough dynamics and convective liquid droplet transport in polymer electrolyte membrane (PEM) fuel cell cathode gas channels. While a variety of complex coupled transport phenomena are present in the PEM fuel cell gas channel, we utilize a very simplified experimental model of the system where a droplet originally placed on a hydrophobic GDL is translated quasistatically across the GDL surface by a solid surface. Transport and entrapment are imaged using fluorescence microscopy. This work provides new insights into droplet behaviour at the GDL/land interface in a PEM fuel cell and suggests that hydrophobic land areas are preferable for mitigating the accumulation of liquid water under the land area of the gas flow channels.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Droplet behaviour</subject><subject>Droplets</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Entrapment</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Gas channel land area</subject><subject>Gas diffusion layer</subject><subject>Hydrophilic</subject><subject>Hydrophobic</subject><subject>Land</subject><subject>Liquids</subject><subject>Polymer electrolyte membrane fuel cell</subject><subject>Transport</subject><subject>Water management</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCygbxCrBjutHdlQVL6kSG1hbU3sCrtIktRMq_h5XLWxZzebcubqHkGtGC0aZvFsX677bxW4MRUmpLqgqKGcnZMK04nmphDglE8qVzpUS_JxcxLimlDKm6ITMl347epftYMCQDQHa2HdhyFY47BDb7CNA_-kHzHroEwCtyyCLXZMicQw1WLwkZzU0Ea-Od0reHx_eFs_58vXpZTFf5par2ZDXUligWsHMcS1RgZMVItduVTpa1ishJHPSMk6Fs0pzDso56yoGVakqp_mU3B7-9qHbjhgHs_HRYtNAi90Yja5kydJkkUh5IG3oYgxYmz74DYRvw6jZKzNr86vM7JUZqkxSloI3xwqIFpo62bA-_qVLVgqpxSxx9wcO094vj8FE67G16HxAOxjX-f-qfgAn84ZV</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Bazylak, A.</creator><creator>Heinrich, J.</creator><creator>Djilali, N.</creator><creator>Sinton, D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20081201</creationdate><title>Liquid water transport between graphite paper and a solid surface</title><author>Bazylak, A. ; Heinrich, J. ; Djilali, N. ; Sinton, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-f65ca087a4d386e7ad69ee38db2d02fb5561d6c1305dc7833a7ddcd91a9279d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Droplet behaviour</topic><topic>Droplets</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Entrapment</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Gas channel land area</topic><topic>Gas diffusion layer</topic><topic>Hydrophilic</topic><topic>Hydrophobic</topic><topic>Land</topic><topic>Liquids</topic><topic>Polymer electrolyte membrane fuel cell</topic><topic>Transport</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazylak, A.</creatorcontrib><creatorcontrib>Heinrich, J.</creatorcontrib><creatorcontrib>Djilali, N.</creatorcontrib><creatorcontrib>Sinton, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazylak, A.</au><au>Heinrich, J.</au><au>Djilali, N.</au><au>Sinton, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid water transport between graphite paper and a solid surface</atitle><jtitle>Journal of power sources</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>185</volume><issue>2</issue><spage>1147</spage><epage>1153</epage><pages>1147-1153</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>We studied the interaction of a water droplet with a solid wall on a hydrophobic gas diffusion layer (GDL). Of particular interest is the stability of the droplet as a function of plate wetting properties and the potential for liquid entrapment in the GDL/land contact area. Such transport is of relevance to breakthrough dynamics and convective liquid droplet transport in polymer electrolyte membrane (PEM) fuel cell cathode gas channels. While a variety of complex coupled transport phenomena are present in the PEM fuel cell gas channel, we utilize a very simplified experimental model of the system where a droplet originally placed on a hydrophobic GDL is translated quasistatically across the GDL surface by a solid surface. Transport and entrapment are imaged using fluorescence microscopy. This work provides new insights into droplet behaviour at the GDL/land interface in a PEM fuel cell and suggests that hydrophobic land areas are preferable for mitigating the accumulation of liquid water under the land area of the gas flow channels.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2008.07.031</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2008-12, Vol.185 (2), p.1147-1153
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_896211875
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Channels
Droplet behaviour
Droplets
Dynamics
Energy
Energy. Thermal use of fuels
Entrapment
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Gas channel land area
Gas diffusion layer
Hydrophilic
Hydrophobic
Land
Liquids
Polymer electrolyte membrane fuel cell
Transport
Water management
title Liquid water transport between graphite paper and a solid surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20water%20transport%20between%20graphite%20paper%20and%20a%20solid%20surface&rft.jtitle=Journal%20of%20power%20sources&rft.au=Bazylak,%20A.&rft.date=2008-12-01&rft.volume=185&rft.issue=2&rft.spage=1147&rft.epage=1153&rft.pages=1147-1153&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2008.07.031&rft_dat=%3Cproquest_cross%3E896211875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896211875&rft_id=info:pmid/&rft_els_id=S0378775308013906&rfr_iscdi=true