Spin-torque diode effect in magnetic tunnel junctions
There is currently much interest in the development of 'spintronic' devices, in which harnessing the spins of electrons (rather than just their charges) is anticipated to provide new functionalities that go beyond those possible with conventional electronic devices. One widely studied exam...
Gespeichert in:
Veröffentlicht in: | Nature 2005-11, Vol.438 (7066), p.339-342 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 7066 |
container_start_page | 339 |
container_title | Nature |
container_volume | 438 |
creator | Tsunekawa, K Djayaprawira, D. D Kubota, H Suzuki, Y Maehara, H Yuasa, S Watanabe, N Tulapurkar, A. A Fukushima, A |
description | There is currently much interest in the development of 'spintronic' devices, in which harnessing the spins of electrons (rather than just their charges) is anticipated to provide new functionalities that go beyond those possible with conventional electronic devices. One widely studied example of an effect that has its roots in the electron's spin degree of freedom is the torque exerted by a spin-polarized electric current on the spin moment of a nanometre-scale magnet. This torque causes the magnetic moment to rotate at potentially useful frequencies. Here we report a very different phenomenon that is also based on the interplay between spin dynamics and spin-dependent transport, and which arises from unusual diode behaviour. We show that the application of a small radio-frequency alternating current to a nanometre-scale magnetic tunnel junction can generate a measurable direct-current (d.c.) voltage across the device when the frequency is resonant with the spin oscillations that arise from the spin-torque effect: at resonance (which can be tuned by an external magnetic field), the structure exhibits different resistance states depending on the direction of the current. This behaviour is markedly different from that of a conventional semiconductor diode, and could form the basis of a nanometre-scale radio-frequency detector in telecommunication circuits. |
doi_str_mv | 10.1038/nature04207 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_896210626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185466592</galeid><sourcerecordid>A185466592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c714t-6b525516eba1ce72c58c17ddf4b326ce2eb31c750e71d580bec9583a43c0f9c93</originalsourceid><addsrcrecordid>eNqF0ttrFDEUB-Agil2rT77LWPCGTM1lcpnHZfFSKAq24mPIZM4sWWYy2yQD-t-bZZd2V9ZKIIHw5ZdwchB6TvA5wUx98CZNAXBFsXyAZqSSoqyEkg_RDGOqSqyYOEFPYlxhjDmR1WN0QgStKcNyhvjV2vkyjeFmgqJ1YwsFdB3YVDhfDGbpITlbpMl76IvV5G1yo49P0aPO9BGe7dZT9OPTx-vFl_Ly2-eLxfyytJJUqRQNp5wTAY0hFiS1XFki27arGkaFBQoNI1ZyDJK0XOEGbM0VMxWzuKttzU7Rm23uOoz5gTHpwUULfW88jFPUqhaUYEFFlq_vlUIpLIXi_4VUYVVRvkl8ey8kkjPOsOAs07O_6Gqcgs-V0RRXXKg8Z1Ru0dL0oJ3vxhSMXYKHYPrRQ-fy9pwoXgnB8-_chh54u3Y3eh-dH0F5tDA4ezT13cGBbBL8Skszxagvrr4f2vf_tvPrn4uvR7UNY4wBOr0ObjDhtyZYbxpV7zVq1i92JZuaAdo7u-vMDF7tgInW9F0w3rp45ySVislNi7zcum36Ldi_7A8H-PbZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204568204</pqid></control><display><type>article</type><title>Spin-torque diode effect in magnetic tunnel junctions</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Tsunekawa, K ; Djayaprawira, D. D ; Kubota, H ; Suzuki, Y ; Maehara, H ; Yuasa, S ; Watanabe, N ; Tulapurkar, A. A ; Fukushima, A</creator><creatorcontrib>Tsunekawa, K ; Djayaprawira, D. D ; Kubota, H ; Suzuki, Y ; Maehara, H ; Yuasa, S ; Watanabe, N ; Tulapurkar, A. A ; Fukushima, A</creatorcontrib><description>There is currently much interest in the development of 'spintronic' devices, in which harnessing the spins of electrons (rather than just their charges) is anticipated to provide new functionalities that go beyond those possible with conventional electronic devices. One widely studied example of an effect that has its roots in the electron's spin degree of freedom is the torque exerted by a spin-polarized electric current on the spin moment of a nanometre-scale magnet. This torque causes the magnetic moment to rotate at potentially useful frequencies. Here we report a very different phenomenon that is also based on the interplay between spin dynamics and spin-dependent transport, and which arises from unusual diode behaviour. We show that the application of a small radio-frequency alternating current to a nanometre-scale magnetic tunnel junction can generate a measurable direct-current (d.c.) voltage across the device when the frequency is resonant with the spin oscillations that arise from the spin-torque effect: at resonance (which can be tuned by an external magnetic field), the structure exhibits different resistance states depending on the direction of the current. This behaviour is markedly different from that of a conventional semiconductor diode, and could form the basis of a nanometre-scale radio-frequency detector in telecommunication circuits.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature04207</identifier><identifier>PMID: 16292307</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Applied sciences ; Circuits ; Detectors ; Devices ; Diodes ; Electric potential ; Electromagnetism ; Electron spin ; Electronics ; Exact sciences and technology ; Ions ; Magnetic fields ; Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics ; Molecular electronics, nanoelectronics ; Oscillations ; Radio frequency ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Torque ; Tunnel junctions</subject><ispartof>Nature, 2005-11, Vol.438 (7066), p.339-342</ispartof><rights>2006 INIST-CNRS</rights><rights>COPYRIGHT 2005 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 17, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c714t-6b525516eba1ce72c58c17ddf4b326ce2eb31c750e71d580bec9583a43c0f9c93</citedby><cites>FETCH-LOGICAL-c714t-6b525516eba1ce72c58c17ddf4b326ce2eb31c750e71d580bec9583a43c0f9c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17278379$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16292307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsunekawa, K</creatorcontrib><creatorcontrib>Djayaprawira, D. D</creatorcontrib><creatorcontrib>Kubota, H</creatorcontrib><creatorcontrib>Suzuki, Y</creatorcontrib><creatorcontrib>Maehara, H</creatorcontrib><creatorcontrib>Yuasa, S</creatorcontrib><creatorcontrib>Watanabe, N</creatorcontrib><creatorcontrib>Tulapurkar, A. A</creatorcontrib><creatorcontrib>Fukushima, A</creatorcontrib><title>Spin-torque diode effect in magnetic tunnel junctions</title><title>Nature</title><addtitle>Nature</addtitle><description>There is currently much interest in the development of 'spintronic' devices, in which harnessing the spins of electrons (rather than just their charges) is anticipated to provide new functionalities that go beyond those possible with conventional electronic devices. One widely studied example of an effect that has its roots in the electron's spin degree of freedom is the torque exerted by a spin-polarized electric current on the spin moment of a nanometre-scale magnet. This torque causes the magnetic moment to rotate at potentially useful frequencies. Here we report a very different phenomenon that is also based on the interplay between spin dynamics and spin-dependent transport, and which arises from unusual diode behaviour. We show that the application of a small radio-frequency alternating current to a nanometre-scale magnetic tunnel junction can generate a measurable direct-current (d.c.) voltage across the device when the frequency is resonant with the spin oscillations that arise from the spin-torque effect: at resonance (which can be tuned by an external magnetic field), the structure exhibits different resistance states depending on the direction of the current. This behaviour is markedly different from that of a conventional semiconductor diode, and could form the basis of a nanometre-scale radio-frequency detector in telecommunication circuits.</description><subject>Applied sciences</subject><subject>Circuits</subject><subject>Detectors</subject><subject>Devices</subject><subject>Diodes</subject><subject>Electric potential</subject><subject>Electromagnetism</subject><subject>Electron spin</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Ions</subject><subject>Magnetic fields</subject><subject>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Oscillations</subject><subject>Radio frequency</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Torque</subject><subject>Tunnel junctions</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0ttrFDEUB-Agil2rT77LWPCGTM1lcpnHZfFSKAq24mPIZM4sWWYy2yQD-t-bZZd2V9ZKIIHw5ZdwchB6TvA5wUx98CZNAXBFsXyAZqSSoqyEkg_RDGOqSqyYOEFPYlxhjDmR1WN0QgStKcNyhvjV2vkyjeFmgqJ1YwsFdB3YVDhfDGbpITlbpMl76IvV5G1yo49P0aPO9BGe7dZT9OPTx-vFl_Ly2-eLxfyytJJUqRQNp5wTAY0hFiS1XFki27arGkaFBQoNI1ZyDJK0XOEGbM0VMxWzuKttzU7Rm23uOoz5gTHpwUULfW88jFPUqhaUYEFFlq_vlUIpLIXi_4VUYVVRvkl8ey8kkjPOsOAs07O_6Gqcgs-V0RRXXKg8Z1Ru0dL0oJ3vxhSMXYKHYPrRQ-fy9pwoXgnB8-_chh54u3Y3eh-dH0F5tDA4ezT13cGBbBL8Skszxagvrr4f2vf_tvPrn4uvR7UNY4wBOr0ObjDhtyZYbxpV7zVq1i92JZuaAdo7u-vMDF7tgInW9F0w3rp45ySVislNi7zcum36Ldi_7A8H-PbZ</recordid><startdate>20051117</startdate><enddate>20051117</enddate><creator>Tsunekawa, K</creator><creator>Djayaprawira, D. D</creator><creator>Kubota, H</creator><creator>Suzuki, Y</creator><creator>Maehara, H</creator><creator>Yuasa, S</creator><creator>Watanabe, N</creator><creator>Tulapurkar, A. A</creator><creator>Fukushima, A</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20051117</creationdate><title>Spin-torque diode effect in magnetic tunnel junctions</title><author>Tsunekawa, K ; Djayaprawira, D. D ; Kubota, H ; Suzuki, Y ; Maehara, H ; Yuasa, S ; Watanabe, N ; Tulapurkar, A. A ; Fukushima, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c714t-6b525516eba1ce72c58c17ddf4b326ce2eb31c750e71d580bec9583a43c0f9c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Circuits</topic><topic>Detectors</topic><topic>Devices</topic><topic>Diodes</topic><topic>Electric potential</topic><topic>Electromagnetism</topic><topic>Electron spin</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Ions</topic><topic>Magnetic fields</topic><topic>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Oscillations</topic><topic>Radio frequency</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Torque</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsunekawa, K</creatorcontrib><creatorcontrib>Djayaprawira, D. D</creatorcontrib><creatorcontrib>Kubota, H</creatorcontrib><creatorcontrib>Suzuki, Y</creatorcontrib><creatorcontrib>Maehara, H</creatorcontrib><creatorcontrib>Yuasa, S</creatorcontrib><creatorcontrib>Watanabe, N</creatorcontrib><creatorcontrib>Tulapurkar, A. A</creatorcontrib><creatorcontrib>Fukushima, A</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsunekawa, K</au><au>Djayaprawira, D. D</au><au>Kubota, H</au><au>Suzuki, Y</au><au>Maehara, H</au><au>Yuasa, S</au><au>Watanabe, N</au><au>Tulapurkar, A. A</au><au>Fukushima, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-torque diode effect in magnetic tunnel junctions</atitle><jtitle>Nature</jtitle><addtitle>Nature</addtitle><date>2005-11-17</date><risdate>2005</risdate><volume>438</volume><issue>7066</issue><spage>339</spage><epage>342</epage><pages>339-342</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>There is currently much interest in the development of 'spintronic' devices, in which harnessing the spins of electrons (rather than just their charges) is anticipated to provide new functionalities that go beyond those possible with conventional electronic devices. One widely studied example of an effect that has its roots in the electron's spin degree of freedom is the torque exerted by a spin-polarized electric current on the spin moment of a nanometre-scale magnet. This torque causes the magnetic moment to rotate at potentially useful frequencies. Here we report a very different phenomenon that is also based on the interplay between spin dynamics and spin-dependent transport, and which arises from unusual diode behaviour. We show that the application of a small radio-frequency alternating current to a nanometre-scale magnetic tunnel junction can generate a measurable direct-current (d.c.) voltage across the device when the frequency is resonant with the spin oscillations that arise from the spin-torque effect: at resonance (which can be tuned by an external magnetic field), the structure exhibits different resistance states depending on the direction of the current. This behaviour is markedly different from that of a conventional semiconductor diode, and could form the basis of a nanometre-scale radio-frequency detector in telecommunication circuits.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>16292307</pmid><doi>10.1038/nature04207</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2005-11, Vol.438 (7066), p.339-342 |
issn | 0028-0836 1476-4687 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_896210626 |
source | Nature Journals Online; Alma/SFX Local Collection |
subjects | Applied sciences Circuits Detectors Devices Diodes Electric potential Electromagnetism Electron spin Electronics Exact sciences and technology Ions Magnetic fields Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics Molecular electronics, nanoelectronics Oscillations Radio frequency Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Torque Tunnel junctions |
title | Spin-torque diode effect in magnetic tunnel junctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-torque%20diode%20effect%20in%20magnetic%20tunnel%20junctions&rft.jtitle=Nature&rft.au=Tsunekawa,%20K&rft.date=2005-11-17&rft.volume=438&rft.issue=7066&rft.spage=339&rft.epage=342&rft.pages=339-342&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature04207&rft_dat=%3Cgale_proqu%3EA185466592%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204568204&rft_id=info:pmid/16292307&rft_galeid=A185466592&rfr_iscdi=true |