Forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metals on polyaniline Ce(IV) molybdate: A simple practical approach for the determination of regeneration and separation capability of ion exchanger

► Polyaniline Ce(IV) molybdate cation exchange material was prepared by sol-gel method. ► Kinetic study for the metal ions was carried out to explore the potentiality of the ion exchanger in environmental analysis. ► The study provides the regeneration and separation capability of the ion exchanger...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2011-07, Vol.171 (2), p.456-463
Hauptverfasser: AL-Othman, Zeid A., Inamuddin, Naushad, Mu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 463
container_issue 2
container_start_page 456
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 171
creator AL-Othman, Zeid A.
Inamuddin
Naushad, Mu
description ► Polyaniline Ce(IV) molybdate cation exchange material was prepared by sol-gel method. ► Kinetic study for the metal ions was carried out to explore the potentiality of the ion exchanger in environmental analysis. ► The study provides the regeneration and separation capability of the ion exchanger useable for environmental remediation. ► Nernst-Planck equation was applied to bypass old Bt criterion which is not very useful for non-isotopic exchange. ► The ion exchange process is feasible and spontaneous in the forward direction with particle diffusion control. The Nernst–Plank equation is applied to study the forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metal ions like Cd2+, Cu2+, Pb2+ and Zn2+ on the surface of composite cation exchanger polyaniline Ce(IV) molybdate. Both the exchanges are favored under particle diffusion control phenomenon. It was observed that the reverse ion exchange rate is some how slower than the forward ion exchange process, however, achieved successfully. To understand the mechanism of exchange various physical parameters like fractional attainment of equilibrium U(τ), self-diffusion coefficient (D0), energy of activation (Ea) and entropy of activation (ΔS*) are evaluated. The regeneration and separation capability of this cation exchanger is well established as the differences in activation energy and enthalpy of activation for forward and reverse ion exchange processes are considerable.
doi_str_mv 10.1016/j.cej.2011.03.103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896210240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894711004323</els_id><sourcerecordid>896210240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-49a00a32de4c79a2eb3a1e8ca1fe8fc5d35e90f83d8e6b4e094af3adec1c9cb43</originalsourceid><addsrcrecordid>eNp9kcGO0zAQhiMEEsvCA3DCF0SrVYsdO00Mp1W1S1daxAGWqzV1Jq1L4mTtbKFvsGfeEJ6ECakQpz3Z8_ubf8YzSfJS8LngYvF2N7e4m6dciDmXJMlHyYkocjmTqUgf010W2azQKn-aPItxxzlfaKFPkl-XbfgOoWSTj-nZ7_ufq7MpA1-ygHsMEdlkNaj0NmWu9Qx_2C34DbJvzmPvbGRtxfotsi3C_sAa7KEmzbOurQ_gXU0YW-Lk6uuUNSStS-jxHTtn0TVdjawLYMkGagZdF1qwW1a14a9jiT2Gxnnoh8JUJuAGPYYxHnqM2MExtNDBmqr1h4H8v9PwPHlSUVP44nieJjeXF1-Wq9n1pw9Xy_PrmVVi0c-UBs5BpiUqm2tIcS1BYGFBVFhUNitlhppXhSwLXKwVcq2gklCiFVbbtZKnyZvRl_5xe4exN42LFusaPLZ30RR6kQqeKk7k5EFS5HkueJ6pnFAxoja0MQasTBdcA-FgBDfD4s3O0OLNsHjDJUmScl4f7SHSZKsA3rr4LzFVmdKFzoh7NXIVtAY2gZibz2SUcS64ovpEvB8JpLntHQYTrUNvsXQBbW_K1j3Qxx8nW9FL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777107547</pqid></control><display><type>article</type><title>Forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metals on polyaniline Ce(IV) molybdate: A simple practical approach for the determination of regeneration and separation capability of ion exchanger</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>AL-Othman, Zeid A. ; Inamuddin ; Naushad, Mu</creator><creatorcontrib>AL-Othman, Zeid A. ; Inamuddin ; Naushad, Mu</creatorcontrib><description>► Polyaniline Ce(IV) molybdate cation exchange material was prepared by sol-gel method. ► Kinetic study for the metal ions was carried out to explore the potentiality of the ion exchanger in environmental analysis. ► The study provides the regeneration and separation capability of the ion exchanger useable for environmental remediation. ► Nernst-Planck equation was applied to bypass old Bt criterion which is not very useful for non-isotopic exchange. ► The ion exchange process is feasible and spontaneous in the forward direction with particle diffusion control. The Nernst–Plank equation is applied to study the forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metal ions like Cd2+, Cu2+, Pb2+ and Zn2+ on the surface of composite cation exchanger polyaniline Ce(IV) molybdate. Both the exchanges are favored under particle diffusion control phenomenon. It was observed that the reverse ion exchange rate is some how slower than the forward ion exchange process, however, achieved successfully. To understand the mechanism of exchange various physical parameters like fractional attainment of equilibrium U(τ), self-diffusion coefficient (D0), energy of activation (Ea) and entropy of activation (ΔS*) are evaluated. The regeneration and separation capability of this cation exchanger is well established as the differences in activation energy and enthalpy of activation for forward and reverse ion exchange processes are considerable.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2011.03.103</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Activation energy ; Applied sciences ; Cation exchange kinetics ; Cation exchanging ; Chemical engineering ; enthalpy ; entropy ; equations ; Exact sciences and technology ; Heavy metals ; Ion exchange ; Ion exchangers ; Mathematical analysis ; metal ions ; Molybdates ; Organic–inorganic composite ; Polyaniline Ce(IV) molybdate ; Polyanilines ; Regeneration ; Separation</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2011-07, Vol.171 (2), p.456-463</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-49a00a32de4c79a2eb3a1e8ca1fe8fc5d35e90f83d8e6b4e094af3adec1c9cb43</citedby><cites>FETCH-LOGICAL-c416t-49a00a32de4c79a2eb3a1e8ca1fe8fc5d35e90f83d8e6b4e094af3adec1c9cb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cej.2011.03.103$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24549895$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>AL-Othman, Zeid A.</creatorcontrib><creatorcontrib>Inamuddin</creatorcontrib><creatorcontrib>Naushad, Mu</creatorcontrib><title>Forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metals on polyaniline Ce(IV) molybdate: A simple practical approach for the determination of regeneration and separation capability of ion exchanger</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>► Polyaniline Ce(IV) molybdate cation exchange material was prepared by sol-gel method. ► Kinetic study for the metal ions was carried out to explore the potentiality of the ion exchanger in environmental analysis. ► The study provides the regeneration and separation capability of the ion exchanger useable for environmental remediation. ► Nernst-Planck equation was applied to bypass old Bt criterion which is not very useful for non-isotopic exchange. ► The ion exchange process is feasible and spontaneous in the forward direction with particle diffusion control. The Nernst–Plank equation is applied to study the forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metal ions like Cd2+, Cu2+, Pb2+ and Zn2+ on the surface of composite cation exchanger polyaniline Ce(IV) molybdate. Both the exchanges are favored under particle diffusion control phenomenon. It was observed that the reverse ion exchange rate is some how slower than the forward ion exchange process, however, achieved successfully. To understand the mechanism of exchange various physical parameters like fractional attainment of equilibrium U(τ), self-diffusion coefficient (D0), energy of activation (Ea) and entropy of activation (ΔS*) are evaluated. The regeneration and separation capability of this cation exchanger is well established as the differences in activation energy and enthalpy of activation for forward and reverse ion exchange processes are considerable.</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>Cation exchange kinetics</subject><subject>Cation exchanging</subject><subject>Chemical engineering</subject><subject>enthalpy</subject><subject>entropy</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Heavy metals</subject><subject>Ion exchange</subject><subject>Ion exchangers</subject><subject>Mathematical analysis</subject><subject>metal ions</subject><subject>Molybdates</subject><subject>Organic–inorganic composite</subject><subject>Polyaniline Ce(IV) molybdate</subject><subject>Polyanilines</subject><subject>Regeneration</subject><subject>Separation</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kcGO0zAQhiMEEsvCA3DCF0SrVYsdO00Mp1W1S1daxAGWqzV1Jq1L4mTtbKFvsGfeEJ6ECakQpz3Z8_ubf8YzSfJS8LngYvF2N7e4m6dciDmXJMlHyYkocjmTqUgf010W2azQKn-aPItxxzlfaKFPkl-XbfgOoWSTj-nZ7_ufq7MpA1-ygHsMEdlkNaj0NmWu9Qx_2C34DbJvzmPvbGRtxfotsi3C_sAa7KEmzbOurQ_gXU0YW-Lk6uuUNSStS-jxHTtn0TVdjawLYMkGagZdF1qwW1a14a9jiT2Gxnnoh8JUJuAGPYYxHnqM2MExtNDBmqr1h4H8v9PwPHlSUVP44nieJjeXF1-Wq9n1pw9Xy_PrmVVi0c-UBs5BpiUqm2tIcS1BYGFBVFhUNitlhppXhSwLXKwVcq2gklCiFVbbtZKnyZvRl_5xe4exN42LFusaPLZ30RR6kQqeKk7k5EFS5HkueJ6pnFAxoja0MQasTBdcA-FgBDfD4s3O0OLNsHjDJUmScl4f7SHSZKsA3rr4LzFVmdKFzoh7NXIVtAY2gZibz2SUcS64ovpEvB8JpLntHQYTrUNvsXQBbW_K1j3Qxx8nW9FL</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>AL-Othman, Zeid A.</creator><creator>Inamuddin</creator><creator>Naushad, Mu</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110701</creationdate><title>Forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metals on polyaniline Ce(IV) molybdate: A simple practical approach for the determination of regeneration and separation capability of ion exchanger</title><author>AL-Othman, Zeid A. ; Inamuddin ; Naushad, Mu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-49a00a32de4c79a2eb3a1e8ca1fe8fc5d35e90f83d8e6b4e094af3adec1c9cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>Cation exchange kinetics</topic><topic>Cation exchanging</topic><topic>Chemical engineering</topic><topic>enthalpy</topic><topic>entropy</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Heavy metals</topic><topic>Ion exchange</topic><topic>Ion exchangers</topic><topic>Mathematical analysis</topic><topic>metal ions</topic><topic>Molybdates</topic><topic>Organic–inorganic composite</topic><topic>Polyaniline Ce(IV) molybdate</topic><topic>Polyanilines</topic><topic>Regeneration</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-Othman, Zeid A.</creatorcontrib><creatorcontrib>Inamuddin</creatorcontrib><creatorcontrib>Naushad, Mu</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-Othman, Zeid A.</au><au>Inamuddin</au><au>Naushad, Mu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metals on polyaniline Ce(IV) molybdate: A simple practical approach for the determination of regeneration and separation capability of ion exchanger</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>171</volume><issue>2</issue><spage>456</spage><epage>463</epage><pages>456-463</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>► Polyaniline Ce(IV) molybdate cation exchange material was prepared by sol-gel method. ► Kinetic study for the metal ions was carried out to explore the potentiality of the ion exchanger in environmental analysis. ► The study provides the regeneration and separation capability of the ion exchanger useable for environmental remediation. ► Nernst-Planck equation was applied to bypass old Bt criterion which is not very useful for non-isotopic exchange. ► The ion exchange process is feasible and spontaneous in the forward direction with particle diffusion control. The Nernst–Plank equation is applied to study the forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metal ions like Cd2+, Cu2+, Pb2+ and Zn2+ on the surface of composite cation exchanger polyaniline Ce(IV) molybdate. Both the exchanges are favored under particle diffusion control phenomenon. It was observed that the reverse ion exchange rate is some how slower than the forward ion exchange process, however, achieved successfully. To understand the mechanism of exchange various physical parameters like fractional attainment of equilibrium U(τ), self-diffusion coefficient (D0), energy of activation (Ea) and entropy of activation (ΔS*) are evaluated. The regeneration and separation capability of this cation exchanger is well established as the differences in activation energy and enthalpy of activation for forward and reverse ion exchange processes are considerable.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2011.03.103</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2011-07, Vol.171 (2), p.456-463
issn 1385-8947
1873-3212
language eng
recordid cdi_proquest_miscellaneous_896210240
source ScienceDirect Journals (5 years ago - present)
subjects Activation energy
Applied sciences
Cation exchange kinetics
Cation exchanging
Chemical engineering
enthalpy
entropy
equations
Exact sciences and technology
Heavy metals
Ion exchange
Ion exchangers
Mathematical analysis
metal ions
Molybdates
Organic–inorganic composite
Polyaniline Ce(IV) molybdate
Polyanilines
Regeneration
Separation
title Forward (M2+−H+) and reverse (H+−M2+) ion exchange kinetics of the heavy metals on polyaniline Ce(IV) molybdate: A simple practical approach for the determination of regeneration and separation capability of ion exchanger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward%20(M2+%E2%88%92H+)%20and%20reverse%20(H+%E2%88%92M2+)%20ion%20exchange%20kinetics%20of%20the%20heavy%20metals%20on%20polyaniline%20Ce(IV)%20molybdate:%20A%20simple%20practical%20approach%20for%20the%20determination%20of%20regeneration%20and%20separation%20capability%20of%20ion%20exchanger&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=AL-Othman,%20Zeid%20A.&rft.date=2011-07-01&rft.volume=171&rft.issue=2&rft.spage=456&rft.epage=463&rft.pages=456-463&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2011.03.103&rft_dat=%3Cproquest_cross%3E896210240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777107547&rft_id=info:pmid/&rft_els_id=S1385894711004323&rfr_iscdi=true