An adaptive dead-time compensation strategy for voltage source inverter fed motor drives

This paper presents an adaptive dead-time compensation strategy to obtain fundamental phase voltage for inverter fed vector controlled permanent magnet synchronous motor drives. The amplitude of phase dead-time compensation voltage (DTCV) to compensate disturbance voltage due to undesirable characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2005-09, Vol.20 (5), p.1150-1160
Hauptverfasser: Urasaki, N., Senjyu, T., Uezato, K., Funabashi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1160
container_issue 5
container_start_page 1150
container_title IEEE transactions on power electronics
container_volume 20
creator Urasaki, N.
Senjyu, T.
Uezato, K.
Funabashi, T.
description This paper presents an adaptive dead-time compensation strategy to obtain fundamental phase voltage for inverter fed vector controlled permanent magnet synchronous motor drives. The amplitude of phase dead-time compensation voltage (DTCV) to compensate disturbance voltage due to undesirable characteristics of inverter, such as dead-time, turn-on/off time of switching devices, and on-voltages of switching devices and diodes is adaptively determined according to a dead-time compensation time (DTCT). DTCT is identified on-line with using a /spl delta/-axis disturbance voltage in the current reference frame that is synchronized with current vector. The /spl delta/-axis disturbance voltage is estimated by a disturbance observer. The accuracy of identified DTCT is experimentally confirmed by calculating the mean absolute percentage error (MAPE) between a calculated active power and a measured one. MAPE for adaptive DTCT is almost within 5% at any operating point.
doi_str_mv 10.1109/TPEL.2005.854046
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896209220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1504887</ieee_id><sourcerecordid>896209220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-63ba665f43df92bc2cb974e11da6c217b1021d2b983d2213e542ab206f4a11383</originalsourceid><addsrcrecordid>eNp90btrHDEQBnARYsjFTh9IIwKJq73M6LXa0hg_AgdJ4UA6oZVmzZp9XCTdgf_77HIGQ4qoUaHffGL4GPuIsEWE5tvDz5vdVgDordUKlHnDNtgorAChfss2YK2ubNPId-x9zk8AqDTghv2-mriPfl_6I_FIPlalH4mHedzTlH3p54nnknyhx2fezYkf56H4R-J5PqRAvJ-OlAol3lHk41wWEdOSlS_YWeeHTB9e7nP26_bm4fq-2v24-359tauClrpURrbeGN0pGbtGtEGEtqkVIUZvgsC6RRAYRdtYGYVASVoJ3wownfKI0spzdnnK3af5z4FycWOfAw2Dn2g-ZGcbI6ARAhb59b9SWNAG1Qo__wOflmWnZQu3fGystEYvCE4opDnnRJ3bp3706dkhuLURtzbi1kbcqZFl5MtLrs_BD13yU-jz61yNy7Gr-3RyPRG9PmtQ1tbyL-d3k3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206683865</pqid></control><display><type>article</type><title>An adaptive dead-time compensation strategy for voltage source inverter fed motor drives</title><source>IEEE Electronic Library (IEL)</source><creator>Urasaki, N. ; Senjyu, T. ; Uezato, K. ; Funabashi, T.</creator><creatorcontrib>Urasaki, N. ; Senjyu, T. ; Uezato, K. ; Funabashi, T.</creatorcontrib><description>This paper presents an adaptive dead-time compensation strategy to obtain fundamental phase voltage for inverter fed vector controlled permanent magnet synchronous motor drives. The amplitude of phase dead-time compensation voltage (DTCV) to compensate disturbance voltage due to undesirable characteristics of inverter, such as dead-time, turn-on/off time of switching devices, and on-voltages of switching devices and diodes is adaptively determined according to a dead-time compensation time (DTCT). DTCT is identified on-line with using a /spl delta/-axis disturbance voltage in the current reference frame that is synchronized with current vector. The /spl delta/-axis disturbance voltage is estimated by a disturbance observer. The accuracy of identified DTCT is experimentally confirmed by calculating the mean absolute percentage error (MAPE) between a calculated active power and a measured one. MAPE for adaptive DTCT is almost within 5% at any operating point.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2005.854046</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Compensation ; Current vector ; dead-time ; Delay estimation ; Devices ; Diodes ; disturbance observer ; Disturbances ; Electric potential ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electronics ; Exact sciences and technology ; Experiments ; Frequency estimation ; Inverters ; Mathematical analysis ; Motor drives ; Motors ; Permanent magnet motors ; permanent magnet synchronous motor (PMSM) ; Power electronics, power supplies ; Power engineering and energy ; Programmable control ; Regulation and control ; Rotors ; Strategy ; Vectors (mathematics) ; Voltage ; voltage source inverter (VSI)</subject><ispartof>IEEE transactions on power electronics, 2005-09, Vol.20 (5), p.1150-1160</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-63ba665f43df92bc2cb974e11da6c217b1021d2b983d2213e542ab206f4a11383</citedby><cites>FETCH-LOGICAL-c535t-63ba665f43df92bc2cb974e11da6c217b1021d2b983d2213e542ab206f4a11383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1504887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1504887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17111186$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Urasaki, N.</creatorcontrib><creatorcontrib>Senjyu, T.</creatorcontrib><creatorcontrib>Uezato, K.</creatorcontrib><creatorcontrib>Funabashi, T.</creatorcontrib><title>An adaptive dead-time compensation strategy for voltage source inverter fed motor drives</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper presents an adaptive dead-time compensation strategy to obtain fundamental phase voltage for inverter fed vector controlled permanent magnet synchronous motor drives. The amplitude of phase dead-time compensation voltage (DTCV) to compensate disturbance voltage due to undesirable characteristics of inverter, such as dead-time, turn-on/off time of switching devices, and on-voltages of switching devices and diodes is adaptively determined according to a dead-time compensation time (DTCT). DTCT is identified on-line with using a /spl delta/-axis disturbance voltage in the current reference frame that is synchronized with current vector. The /spl delta/-axis disturbance voltage is estimated by a disturbance observer. The accuracy of identified DTCT is experimentally confirmed by calculating the mean absolute percentage error (MAPE) between a calculated active power and a measured one. MAPE for adaptive DTCT is almost within 5% at any operating point.</description><subject>Applied sciences</subject><subject>Compensation</subject><subject>Current vector</subject><subject>dead-time</subject><subject>Delay estimation</subject><subject>Devices</subject><subject>Diodes</subject><subject>disturbance observer</subject><subject>Disturbances</subject><subject>Electric potential</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Frequency estimation</subject><subject>Inverters</subject><subject>Mathematical analysis</subject><subject>Motor drives</subject><subject>Motors</subject><subject>Permanent magnet motors</subject><subject>permanent magnet synchronous motor (PMSM)</subject><subject>Power electronics, power supplies</subject><subject>Power engineering and energy</subject><subject>Programmable control</subject><subject>Regulation and control</subject><subject>Rotors</subject><subject>Strategy</subject><subject>Vectors (mathematics)</subject><subject>Voltage</subject><subject>voltage source inverter (VSI)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90btrHDEQBnARYsjFTh9IIwKJq73M6LXa0hg_AgdJ4UA6oZVmzZp9XCTdgf_77HIGQ4qoUaHffGL4GPuIsEWE5tvDz5vdVgDordUKlHnDNtgorAChfss2YK2ubNPId-x9zk8AqDTghv2-mriPfl_6I_FIPlalH4mHedzTlH3p54nnknyhx2fezYkf56H4R-J5PqRAvJ-OlAol3lHk41wWEdOSlS_YWeeHTB9e7nP26_bm4fq-2v24-359tauClrpURrbeGN0pGbtGtEGEtqkVIUZvgsC6RRAYRdtYGYVASVoJ3wownfKI0spzdnnK3af5z4FycWOfAw2Dn2g-ZGcbI6ARAhb59b9SWNAG1Qo__wOflmWnZQu3fGystEYvCE4opDnnRJ3bp3706dkhuLURtzbi1kbcqZFl5MtLrs_BD13yU-jz61yNy7Gr-3RyPRG9PmtQ1tbyL-d3k3Q</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Urasaki, N.</creator><creator>Senjyu, T.</creator><creator>Uezato, K.</creator><creator>Funabashi, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20050901</creationdate><title>An adaptive dead-time compensation strategy for voltage source inverter fed motor drives</title><author>Urasaki, N. ; Senjyu, T. ; Uezato, K. ; Funabashi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-63ba665f43df92bc2cb974e11da6c217b1021d2b983d2213e542ab206f4a11383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Compensation</topic><topic>Current vector</topic><topic>dead-time</topic><topic>Delay estimation</topic><topic>Devices</topic><topic>Diodes</topic><topic>disturbance observer</topic><topic>Disturbances</topic><topic>Electric potential</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Frequency estimation</topic><topic>Inverters</topic><topic>Mathematical analysis</topic><topic>Motor drives</topic><topic>Motors</topic><topic>Permanent magnet motors</topic><topic>permanent magnet synchronous motor (PMSM)</topic><topic>Power electronics, power supplies</topic><topic>Power engineering and energy</topic><topic>Programmable control</topic><topic>Regulation and control</topic><topic>Rotors</topic><topic>Strategy</topic><topic>Vectors (mathematics)</topic><topic>Voltage</topic><topic>voltage source inverter (VSI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urasaki, N.</creatorcontrib><creatorcontrib>Senjyu, T.</creatorcontrib><creatorcontrib>Uezato, K.</creatorcontrib><creatorcontrib>Funabashi, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Urasaki, N.</au><au>Senjyu, T.</au><au>Uezato, K.</au><au>Funabashi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive dead-time compensation strategy for voltage source inverter fed motor drives</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>20</volume><issue>5</issue><spage>1150</spage><epage>1160</epage><pages>1150-1160</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper presents an adaptive dead-time compensation strategy to obtain fundamental phase voltage for inverter fed vector controlled permanent magnet synchronous motor drives. The amplitude of phase dead-time compensation voltage (DTCV) to compensate disturbance voltage due to undesirable characteristics of inverter, such as dead-time, turn-on/off time of switching devices, and on-voltages of switching devices and diodes is adaptively determined according to a dead-time compensation time (DTCT). DTCT is identified on-line with using a /spl delta/-axis disturbance voltage in the current reference frame that is synchronized with current vector. The /spl delta/-axis disturbance voltage is estimated by a disturbance observer. The accuracy of identified DTCT is experimentally confirmed by calculating the mean absolute percentage error (MAPE) between a calculated active power and a measured one. MAPE for adaptive DTCT is almost within 5% at any operating point.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2005.854046</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2005-09, Vol.20 (5), p.1150-1160
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_miscellaneous_896209220
source IEEE Electronic Library (IEL)
subjects Applied sciences
Compensation
Current vector
dead-time
Delay estimation
Devices
Diodes
disturbance observer
Disturbances
Electric potential
Electrical engineering. Electrical power engineering
Electrical machines
Electronics
Exact sciences and technology
Experiments
Frequency estimation
Inverters
Mathematical analysis
Motor drives
Motors
Permanent magnet motors
permanent magnet synchronous motor (PMSM)
Power electronics, power supplies
Power engineering and energy
Programmable control
Regulation and control
Rotors
Strategy
Vectors (mathematics)
Voltage
voltage source inverter (VSI)
title An adaptive dead-time compensation strategy for voltage source inverter fed motor drives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20dead-time%20compensation%20strategy%20for%20voltage%20source%20inverter%20fed%20motor%20drives&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Urasaki,%20N.&rft.date=2005-09-01&rft.volume=20&rft.issue=5&rft.spage=1150&rft.epage=1160&rft.pages=1150-1160&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2005.854046&rft_dat=%3Cproquest_RIE%3E896209220%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206683865&rft_id=info:pmid/&rft_ieee_id=1504887&rfr_iscdi=true