Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications
Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molec...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2011-06, Vol.21 (12), p.2216-2224 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2224 |
---|---|
container_issue | 12 |
container_start_page | 2216 |
container_title | Advanced functional materials |
container_volume | 21 |
creator | Jiménez-García, Lucía Kaltbeitzel, Anke Enkelmann, Volker Gutmann, Jochen S. Klapper, Markus Müllen, Klaus |
description | Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton‐transport mechanism through supramolecular order. Therefore, a series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single‐crystal X‐ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.
Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. A series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery is synthesized. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport. |
doi_str_mv | 10.1002/adfm.201002357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896197716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896197716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4257-272e3158c5d0b6621b25d105ffbe9f2c97abff2315e9878c72ee4c2e95d152723</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxejiYhePffmadh2bN2OBARNAE1Q8daU7pVUyzrbLcp_b8kM8ebp_V7yfS8vvyi6JnhAMKa3olS7AcWHnKTsJOqRjGRxgml-eszk7Ty68P4dY8JYMuxF4tFtRaUlenK2sVU8tlXZykZXW7SwBmRrwCPh0coaXcarRjSAVlALJxrr0CKsTgvjkQrbtAWDxmAMGtW10VI02lb-MjpTgYCr39mPXqZ3z-P7eP44exiP5rEc0pTFlFFISJrLtMSbLKNkQ9OS4FSpDRSKyoKJjVI0IFDkLJcBh6GkUAQqDXLSj266u7Wzny34hu-0l-EbUYFtPc-LjBSMkSyQg46UznrvQPHa6Z1we04wP9THD1XyY5VBKDrhSxvY_0Pz0WS6-OvGnat9A99HV7gPnrGEpXy9nHG8phO6fl3yLPkBjT-Hjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896197716</pqid></control><display><type>article</type><title>Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications</title><source>Wiley Journals</source><creator>Jiménez-García, Lucía ; Kaltbeitzel, Anke ; Enkelmann, Volker ; Gutmann, Jochen S. ; Klapper, Markus ; Müllen, Klaus</creator><creatorcontrib>Jiménez-García, Lucía ; Kaltbeitzel, Anke ; Enkelmann, Volker ; Gutmann, Jochen S. ; Klapper, Markus ; Müllen, Klaus</creatorcontrib><description>Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton‐transport mechanism through supramolecular order. Therefore, a series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single‐crystal X‐ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.
Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. A series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery is synthesized. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.</description><identifier>ISSN: 1616-301X</identifier><identifier>ISSN: 1616-3028</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201002357</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alternative fuels ; Crystallinity ; Electrolytes ; Fuel cells ; membranes ; organic crystals ; Polymers ; proton transport ; proton-conducting materials ; Transport ; Uptakes ; X-rays</subject><ispartof>Advanced functional materials, 2011-06, Vol.21 (12), p.2216-2224</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4257-272e3158c5d0b6621b25d105ffbe9f2c97abff2315e9878c72ee4c2e95d152723</citedby><cites>FETCH-LOGICAL-c4257-272e3158c5d0b6621b25d105ffbe9f2c97abff2315e9878c72ee4c2e95d152723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201002357$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201002357$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jiménez-García, Lucía</creatorcontrib><creatorcontrib>Kaltbeitzel, Anke</creatorcontrib><creatorcontrib>Enkelmann, Volker</creatorcontrib><creatorcontrib>Gutmann, Jochen S.</creatorcontrib><creatorcontrib>Klapper, Markus</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><title>Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton‐transport mechanism through supramolecular order. Therefore, a series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single‐crystal X‐ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.
Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. A series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery is synthesized. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.</description><subject>Alternative fuels</subject><subject>Crystallinity</subject><subject>Electrolytes</subject><subject>Fuel cells</subject><subject>membranes</subject><subject>organic crystals</subject><subject>Polymers</subject><subject>proton transport</subject><subject>proton-conducting materials</subject><subject>Transport</subject><subject>Uptakes</subject><subject>X-rays</subject><issn>1616-301X</issn><issn>1616-3028</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxejiYhePffmadh2bN2OBARNAE1Q8daU7pVUyzrbLcp_b8kM8ebp_V7yfS8vvyi6JnhAMKa3olS7AcWHnKTsJOqRjGRxgml-eszk7Ty68P4dY8JYMuxF4tFtRaUlenK2sVU8tlXZykZXW7SwBmRrwCPh0coaXcarRjSAVlALJxrr0CKsTgvjkQrbtAWDxmAMGtW10VI02lb-MjpTgYCr39mPXqZ3z-P7eP44exiP5rEc0pTFlFFISJrLtMSbLKNkQ9OS4FSpDRSKyoKJjVI0IFDkLJcBh6GkUAQqDXLSj266u7Wzny34hu-0l-EbUYFtPc-LjBSMkSyQg46UznrvQPHa6Z1we04wP9THD1XyY5VBKDrhSxvY_0Pz0WS6-OvGnat9A99HV7gPnrGEpXy9nHG8phO6fl3yLPkBjT-Hjg</recordid><startdate>20110621</startdate><enddate>20110621</enddate><creator>Jiménez-García, Lucía</creator><creator>Kaltbeitzel, Anke</creator><creator>Enkelmann, Volker</creator><creator>Gutmann, Jochen S.</creator><creator>Klapper, Markus</creator><creator>Müllen, Klaus</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110621</creationdate><title>Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications</title><author>Jiménez-García, Lucía ; Kaltbeitzel, Anke ; Enkelmann, Volker ; Gutmann, Jochen S. ; Klapper, Markus ; Müllen, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4257-272e3158c5d0b6621b25d105ffbe9f2c97abff2315e9878c72ee4c2e95d152723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative fuels</topic><topic>Crystallinity</topic><topic>Electrolytes</topic><topic>Fuel cells</topic><topic>membranes</topic><topic>organic crystals</topic><topic>Polymers</topic><topic>proton transport</topic><topic>proton-conducting materials</topic><topic>Transport</topic><topic>Uptakes</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-García, Lucía</creatorcontrib><creatorcontrib>Kaltbeitzel, Anke</creatorcontrib><creatorcontrib>Enkelmann, Volker</creatorcontrib><creatorcontrib>Gutmann, Jochen S.</creatorcontrib><creatorcontrib>Klapper, Markus</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-García, Lucía</au><au>Kaltbeitzel, Anke</au><au>Enkelmann, Volker</au><au>Gutmann, Jochen S.</au><au>Klapper, Markus</au><au>Müllen, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2011-06-21</date><risdate>2011</risdate><volume>21</volume><issue>12</issue><spage>2216</spage><epage>2224</epage><pages>2216-2224</pages><issn>1616-301X</issn><issn>1616-3028</issn><eissn>1616-3028</eissn><abstract>Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton‐transport mechanism through supramolecular order. Therefore, a series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single‐crystal X‐ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.
Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. A series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery is synthesized. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201002357</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2011-06, Vol.21 (12), p.2216-2224 |
issn | 1616-301X 1616-3028 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_896197716 |
source | Wiley Journals |
subjects | Alternative fuels Crystallinity Electrolytes Fuel cells membranes organic crystals Polymers proton transport proton-conducting materials Transport Uptakes X-rays |
title | Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Proton-Conducting%20Molecules%20as%20Solid-State%20Separator%20Materials%20for%20Fuel%20Cell%20Applications&rft.jtitle=Advanced%20functional%20materials&rft.au=Jim%C3%A9nez-Garc%C3%ADa,%20Luc%C3%ADa&rft.date=2011-06-21&rft.volume=21&rft.issue=12&rft.spage=2216&rft.epage=2224&rft.pages=2216-2224&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201002357&rft_dat=%3Cproquest_cross%3E896197716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896197716&rft_id=info:pmid/&rfr_iscdi=true |