Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications

Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2011-06, Vol.21 (12), p.2216-2224
Hauptverfasser: Jiménez-García, Lucía, Kaltbeitzel, Anke, Enkelmann, Volker, Gutmann, Jochen S., Klapper, Markus, Müllen, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2224
container_issue 12
container_start_page 2216
container_title Advanced functional materials
container_volume 21
creator Jiménez-García, Lucía
Kaltbeitzel, Anke
Enkelmann, Volker
Gutmann, Jochen S.
Klapper, Markus
Müllen, Klaus
description Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton‐transport mechanism through supramolecular order. Therefore, a series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single‐crystal X‐ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport. Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. A series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery is synthesized. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.
doi_str_mv 10.1002/adfm.201002357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896197716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896197716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4257-272e3158c5d0b6621b25d105ffbe9f2c97abff2315e9878c72ee4c2e95d152723</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxejiYhePffmadh2bN2OBARNAE1Q8daU7pVUyzrbLcp_b8kM8ebp_V7yfS8vvyi6JnhAMKa3olS7AcWHnKTsJOqRjGRxgml-eszk7Ty68P4dY8JYMuxF4tFtRaUlenK2sVU8tlXZykZXW7SwBmRrwCPh0coaXcarRjSAVlALJxrr0CKsTgvjkQrbtAWDxmAMGtW10VI02lb-MjpTgYCr39mPXqZ3z-P7eP44exiP5rEc0pTFlFFISJrLtMSbLKNkQ9OS4FSpDRSKyoKJjVI0IFDkLJcBh6GkUAQqDXLSj266u7Wzny34hu-0l-EbUYFtPc-LjBSMkSyQg46UznrvQPHa6Z1we04wP9THD1XyY5VBKDrhSxvY_0Pz0WS6-OvGnat9A99HV7gPnrGEpXy9nHG8phO6fl3yLPkBjT-Hjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896197716</pqid></control><display><type>article</type><title>Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications</title><source>Wiley Journals</source><creator>Jiménez-García, Lucía ; Kaltbeitzel, Anke ; Enkelmann, Volker ; Gutmann, Jochen S. ; Klapper, Markus ; Müllen, Klaus</creator><creatorcontrib>Jiménez-García, Lucía ; Kaltbeitzel, Anke ; Enkelmann, Volker ; Gutmann, Jochen S. ; Klapper, Markus ; Müllen, Klaus</creatorcontrib><description>Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton‐transport mechanism through supramolecular order. Therefore, a series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single‐crystal X‐ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport. Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. A series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery is synthesized. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.</description><identifier>ISSN: 1616-301X</identifier><identifier>ISSN: 1616-3028</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201002357</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alternative fuels ; Crystallinity ; Electrolytes ; Fuel cells ; membranes ; organic crystals ; Polymers ; proton transport ; proton-conducting materials ; Transport ; Uptakes ; X-rays</subject><ispartof>Advanced functional materials, 2011-06, Vol.21 (12), p.2216-2224</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4257-272e3158c5d0b6621b25d105ffbe9f2c97abff2315e9878c72ee4c2e95d152723</citedby><cites>FETCH-LOGICAL-c4257-272e3158c5d0b6621b25d105ffbe9f2c97abff2315e9878c72ee4c2e95d152723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201002357$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201002357$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jiménez-García, Lucía</creatorcontrib><creatorcontrib>Kaltbeitzel, Anke</creatorcontrib><creatorcontrib>Enkelmann, Volker</creatorcontrib><creatorcontrib>Gutmann, Jochen S.</creatorcontrib><creatorcontrib>Klapper, Markus</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><title>Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton‐transport mechanism through supramolecular order. Therefore, a series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single‐crystal X‐ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport. Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. A series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery is synthesized. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.</description><subject>Alternative fuels</subject><subject>Crystallinity</subject><subject>Electrolytes</subject><subject>Fuel cells</subject><subject>membranes</subject><subject>organic crystals</subject><subject>Polymers</subject><subject>proton transport</subject><subject>proton-conducting materials</subject><subject>Transport</subject><subject>Uptakes</subject><subject>X-rays</subject><issn>1616-301X</issn><issn>1616-3028</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxejiYhePffmadh2bN2OBARNAE1Q8daU7pVUyzrbLcp_b8kM8ebp_V7yfS8vvyi6JnhAMKa3olS7AcWHnKTsJOqRjGRxgml-eszk7Ty68P4dY8JYMuxF4tFtRaUlenK2sVU8tlXZykZXW7SwBmRrwCPh0coaXcarRjSAVlALJxrr0CKsTgvjkQrbtAWDxmAMGtW10VI02lb-MjpTgYCr39mPXqZ3z-P7eP44exiP5rEc0pTFlFFISJrLtMSbLKNkQ9OS4FSpDRSKyoKJjVI0IFDkLJcBh6GkUAQqDXLSj266u7Wzny34hu-0l-EbUYFtPc-LjBSMkSyQg46UznrvQPHa6Z1we04wP9THD1XyY5VBKDrhSxvY_0Pz0WS6-OvGnat9A99HV7gPnrGEpXy9nHG8phO6fl3yLPkBjT-Hjg</recordid><startdate>20110621</startdate><enddate>20110621</enddate><creator>Jiménez-García, Lucía</creator><creator>Kaltbeitzel, Anke</creator><creator>Enkelmann, Volker</creator><creator>Gutmann, Jochen S.</creator><creator>Klapper, Markus</creator><creator>Müllen, Klaus</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110621</creationdate><title>Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications</title><author>Jiménez-García, Lucía ; Kaltbeitzel, Anke ; Enkelmann, Volker ; Gutmann, Jochen S. ; Klapper, Markus ; Müllen, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4257-272e3158c5d0b6621b25d105ffbe9f2c97abff2315e9878c72ee4c2e95d152723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative fuels</topic><topic>Crystallinity</topic><topic>Electrolytes</topic><topic>Fuel cells</topic><topic>membranes</topic><topic>organic crystals</topic><topic>Polymers</topic><topic>proton transport</topic><topic>proton-conducting materials</topic><topic>Transport</topic><topic>Uptakes</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-García, Lucía</creatorcontrib><creatorcontrib>Kaltbeitzel, Anke</creatorcontrib><creatorcontrib>Enkelmann, Volker</creatorcontrib><creatorcontrib>Gutmann, Jochen S.</creatorcontrib><creatorcontrib>Klapper, Markus</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-García, Lucía</au><au>Kaltbeitzel, Anke</au><au>Enkelmann, Volker</au><au>Gutmann, Jochen S.</au><au>Klapper, Markus</au><au>Müllen, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2011-06-21</date><risdate>2011</risdate><volume>21</volume><issue>12</issue><spage>2216</spage><epage>2224</epage><pages>2216-2224</pages><issn>1616-301X</issn><issn>1616-3028</issn><eissn>1616-3028</eissn><abstract>Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton‐transport mechanism through supramolecular order. Therefore, a series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single‐crystal X‐ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport. Organic proton‐conducting molecules are presented as alternative materials to state‐of‐the‐art polymers used as electrolytes in proton‐exchanging membrane (PEM) fuel cells. A series of phosphonic acid‐containing molecules possessing a carbon‐rich hydrophobic core and a hydrophilic periphery is synthesized. This study provides insights into the proton‐conducting properties of this novel class of materials and the mechanisms responsible for proton transport.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201002357</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2011-06, Vol.21 (12), p.2216-2224
issn 1616-301X
1616-3028
1616-3028
language eng
recordid cdi_proquest_miscellaneous_896197716
source Wiley Journals
subjects Alternative fuels
Crystallinity
Electrolytes
Fuel cells
membranes
organic crystals
Polymers
proton transport
proton-conducting materials
Transport
Uptakes
X-rays
title Organic Proton-Conducting Molecules as Solid-State Separator Materials for Fuel Cell Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Proton-Conducting%20Molecules%20as%20Solid-State%20Separator%20Materials%20for%20Fuel%20Cell%20Applications&rft.jtitle=Advanced%20functional%20materials&rft.au=Jim%C3%A9nez-Garc%C3%ADa,%20Luc%C3%ADa&rft.date=2011-06-21&rft.volume=21&rft.issue=12&rft.spage=2216&rft.epage=2224&rft.pages=2216-2224&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201002357&rft_dat=%3Cproquest_cross%3E896197716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896197716&rft_id=info:pmid/&rfr_iscdi=true