Magnetic field effect on natural convection in a nanofluid-filled square enclosure
This paper examines the natural convection in an enclosure that is filled with a water-Al 2O 3 nanofluid and is influenced by a magnetic field. The enclosure is bounded by two isothermal vertical walls at temperatures T h and T c and by two horizontal adiabatic walls. Based upon numerical prediction...
Gespeichert in:
Veröffentlicht in: | International journal of thermal sciences 2011-09, Vol.50 (9), p.1748-1756 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1756 |
---|---|
container_issue | 9 |
container_start_page | 1748 |
container_title | International journal of thermal sciences |
container_volume | 50 |
creator | Ghasemi, B. Aminossadati, S.M. Raisi, A. |
description | This paper examines the natural convection in an enclosure that is filled with a water-Al
2O
3 nanofluid and is influenced by a magnetic field. The enclosure is bounded by two isothermal vertical walls at temperatures
T
h
and
T
c
and by two horizontal adiabatic walls. Based upon numerical predictions, the effects of pertinent parameters such as the Rayleigh number (10
3
≤
Ra
≤
10
7), the solid volume fraction (0
≤
ϕ
≤
0.06) and the Hartmann number (0
≤
Ha
≤
60) on the flow and temperature fields and the heat transfer performance of the enclosure are examined. Prandtl number is considered to be Pr
=
6.2. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. An increase of the solid volume fraction may result in enhancement or deterioration of the heat transfer performance depending on the value of Hartmann and Rayleigh numbers. |
doi_str_mv | 10.1016/j.ijthermalsci.2011.04.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896197028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072911001268</els_id><sourcerecordid>896197028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-756803c4834a91dcc8cac555087c5104289c4a9b8a5072109bad3137f2926b813</originalsourceid><addsrcrecordid>eNqNkEtLxTAQhYso-PwPRRBXrZO0aRN34hsUQXQdcqcTzSU31aQV_PdGrohLVxnOnJyZ-YrikEHNgHUny9otp1eKK-MTupoDYzW0NTDYKHZY38uqZV23mWuuoIKeq-1iN6UlAPQK1E7xeG9eAk0OS-vIDyVZSziVYyiDmeZofIlj-MiSy5ILpcl6GK2f3VBZ5z0NZXqfTaSSAvoxzZH2iy2b16GDn3eveL66fDq_qe4erm_Pz-4qbAWfql50EhpsZdMaxQZEiQaFECB7FAxaLhXmzkIakfdmoBZmaFjTW654t5Cs2SuO17lvcXyfKU165RKS9ybQOCctVcdUD1xm5-naiXFMKZLVb9GtTPzUDPQ3R73Ufznqb44aWp055s9HP2NMQuNtNAFd-k3gbSNEo1T2Xax9lG_-cBR1TspQaHAx89PD6P4z7gtYpI-B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896197028</pqid></control><display><type>article</type><title>Magnetic field effect on natural convection in a nanofluid-filled square enclosure</title><source>Elsevier ScienceDirect Journals</source><creator>Ghasemi, B. ; Aminossadati, S.M. ; Raisi, A.</creator><creatorcontrib>Ghasemi, B. ; Aminossadati, S.M. ; Raisi, A.</creatorcontrib><description>This paper examines the natural convection in an enclosure that is filled with a water-Al
2O
3 nanofluid and is influenced by a magnetic field. The enclosure is bounded by two isothermal vertical walls at temperatures
T
h
and
T
c
and by two horizontal adiabatic walls. Based upon numerical predictions, the effects of pertinent parameters such as the Rayleigh number (10
3
≤
Ra
≤
10
7), the solid volume fraction (0
≤
ϕ
≤
0.06) and the Hartmann number (0
≤
Ha
≤
60) on the flow and temperature fields and the heat transfer performance of the enclosure are examined. Prandtl number is considered to be Pr
=
6.2. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. An increase of the solid volume fraction may result in enhancement or deterioration of the heat transfer performance depending on the value of Hartmann and Rayleigh numbers.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2011.04.010</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Applied sciences ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Enclosure ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General and physical chemistry ; Heat transfer ; Laminar flows ; Laminar flows in cavities ; Magnetic field ; Magnetic fields ; Nanofluids ; Nanomaterials ; Nanostructure ; Natural convection ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Rayleigh number ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Volume fraction ; Walls</subject><ispartof>International journal of thermal sciences, 2011-09, Vol.50 (9), p.1748-1756</ispartof><rights>2011 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-756803c4834a91dcc8cac555087c5104289c4a9b8a5072109bad3137f2926b813</citedby><cites>FETCH-LOGICAL-c452t-756803c4834a91dcc8cac555087c5104289c4a9b8a5072109bad3137f2926b813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1290072911001268$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24355399$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghasemi, B.</creatorcontrib><creatorcontrib>Aminossadati, S.M.</creatorcontrib><creatorcontrib>Raisi, A.</creatorcontrib><title>Magnetic field effect on natural convection in a nanofluid-filled square enclosure</title><title>International journal of thermal sciences</title><description>This paper examines the natural convection in an enclosure that is filled with a water-Al
2O
3 nanofluid and is influenced by a magnetic field. The enclosure is bounded by two isothermal vertical walls at temperatures
T
h
and
T
c
and by two horizontal adiabatic walls. Based upon numerical predictions, the effects of pertinent parameters such as the Rayleigh number (10
3
≤
Ra
≤
10
7), the solid volume fraction (0
≤
ϕ
≤
0.06) and the Hartmann number (0
≤
Ha
≤
60) on the flow and temperature fields and the heat transfer performance of the enclosure are examined. Prandtl number is considered to be Pr
=
6.2. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. An increase of the solid volume fraction may result in enhancement or deterioration of the heat transfer performance depending on the value of Hartmann and Rayleigh numbers.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Enclosure</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Laminar flows</subject><subject>Laminar flows in cavities</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Natural convection</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Rayleigh number</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Volume fraction</subject><subject>Walls</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxTAQhYso-PwPRRBXrZO0aRN34hsUQXQdcqcTzSU31aQV_PdGrohLVxnOnJyZ-YrikEHNgHUny9otp1eKK-MTupoDYzW0NTDYKHZY38uqZV23mWuuoIKeq-1iN6UlAPQK1E7xeG9eAk0OS-vIDyVZSziVYyiDmeZofIlj-MiSy5ILpcl6GK2f3VBZ5z0NZXqfTaSSAvoxzZH2iy2b16GDn3eveL66fDq_qe4erm_Pz-4qbAWfql50EhpsZdMaxQZEiQaFECB7FAxaLhXmzkIakfdmoBZmaFjTW654t5Cs2SuO17lvcXyfKU165RKS9ybQOCctVcdUD1xm5-naiXFMKZLVb9GtTPzUDPQ3R73Ufznqb44aWp055s9HP2NMQuNtNAFd-k3gbSNEo1T2Xax9lG_-cBR1TspQaHAx89PD6P4z7gtYpI-B</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Ghasemi, B.</creator><creator>Aminossadati, S.M.</creator><creator>Raisi, A.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>Magnetic field effect on natural convection in a nanofluid-filled square enclosure</title><author>Ghasemi, B. ; Aminossadati, S.M. ; Raisi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-756803c4834a91dcc8cac555087c5104289c4a9b8a5072109bad3137f2926b813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Enclosure</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Laminar flows</topic><topic>Laminar flows in cavities</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Natural convection</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Rayleigh number</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Volume fraction</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghasemi, B.</creatorcontrib><creatorcontrib>Aminossadati, S.M.</creatorcontrib><creatorcontrib>Raisi, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghasemi, B.</au><au>Aminossadati, S.M.</au><au>Raisi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic field effect on natural convection in a nanofluid-filled square enclosure</atitle><jtitle>International journal of thermal sciences</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>50</volume><issue>9</issue><spage>1748</spage><epage>1756</epage><pages>1748-1756</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>This paper examines the natural convection in an enclosure that is filled with a water-Al
2O
3 nanofluid and is influenced by a magnetic field. The enclosure is bounded by two isothermal vertical walls at temperatures
T
h
and
T
c
and by two horizontal adiabatic walls. Based upon numerical predictions, the effects of pertinent parameters such as the Rayleigh number (10
3
≤
Ra
≤
10
7), the solid volume fraction (0
≤
ϕ
≤
0.06) and the Hartmann number (0
≤
Ha
≤
60) on the flow and temperature fields and the heat transfer performance of the enclosure are examined. Prandtl number is considered to be Pr
=
6.2. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. An increase of the solid volume fraction may result in enhancement or deterioration of the heat transfer performance depending on the value of Hartmann and Rayleigh numbers.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2011.04.010</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1290-0729 |
ispartof | International journal of thermal sciences, 2011-09, Vol.50 (9), p.1748-1756 |
issn | 1290-0729 1778-4166 |
language | eng |
recordid | cdi_proquest_miscellaneous_896197028 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Chemistry Colloidal state and disperse state Condensed matter: structure, mechanical and thermal properties Enclosure Energy Energy. Thermal use of fuels Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General and physical chemistry Heat transfer Laminar flows Laminar flows in cavities Magnetic field Magnetic fields Nanofluids Nanomaterials Nanostructure Natural convection Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Rayleigh number Theoretical studies. Data and constants. Metering Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes Volume fraction Walls |
title | Magnetic field effect on natural convection in a nanofluid-filled square enclosure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20field%20effect%20on%20natural%20convection%20in%20a%20nanofluid-filled%20square%20enclosure&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Ghasemi,%20B.&rft.date=2011-09-01&rft.volume=50&rft.issue=9&rft.spage=1748&rft.epage=1756&rft.pages=1748-1756&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2011.04.010&rft_dat=%3Cproquest_cross%3E896197028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896197028&rft_id=info:pmid/&rft_els_id=S1290072911001268&rfr_iscdi=true |