Thin-Film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analysis

We present a new method for measuring thermal conductivities of films with nanoscale thickness. The method combines a micro electrothermal test structure with a finite-element- based data analysis procedure. The test device consists of two serpentine nickel structures, which serve as resistive heate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2007-10, Vol.16 (5), p.1269-1275
Hauptverfasser: Stojanovic, N., Jongsin Yun, Washington, E.B.K., Berg, J.M., Holtz, M.W., Temkin, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1275
container_issue 5
container_start_page 1269
container_title Journal of microelectromechanical systems
container_volume 16
creator Stojanovic, N.
Jongsin Yun
Washington, E.B.K.
Berg, J.M.
Holtz, M.W.
Temkin, H.
description We present a new method for measuring thermal conductivities of films with nanoscale thickness. The method combines a micro electrothermal test structure with a finite-element- based data analysis procedure. The test device consists of two serpentine nickel structures, which serve as resistive heaters and resistance temperature detectors, on top of the sample. The sample is supported by a silicon nitride membrane. Analytical solution of the heat flow is infeasible, making interpretation of the data difficult. To address this, we use a finite-element model of the test structure and apply nonlinear least-squares estimation to extract the desired material parameter values. The approach permits simultaneous extraction of multiple parameters. We demonstrate our technique by simultaneously obtaining the thermal conductivity of a 280 mum x 80 mum x 140 nm thick aluminum sample and the 360 mum x 160 mum x 180 nm thick silicon nitride support membrane. The thermal conductivity measured for the silicon nitride thin film is 2.1 W/mK, which is in agreement with reported values for films of this thickness. The thermal conductivity of the Al thin film is found to be 94 W/mK, which is significantly lower than reported bulk values and consistent both with reported trends for thin metallic films and with values that were obtained using electrical resistivity measurements and the Wiedemann-Franz law.
doi_str_mv 10.1109/JMEMS.2007.900877
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896196290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4337808</ieee_id><sourcerecordid>903643836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-f1d8b1c88ab49547bf858b2c40f2e2aa753f331280ee255f7188813d0a95ecb83</originalsourceid><addsrcrecordid>eNqFkktv1DAURiMEEmXgByA2FhKPTQZfP2J7WYYZHmrEotN15Dg31FUmaW0HaZb8czydEUgsysqWfM7Vp-uvKF4CXQJQ8-Fbva4vl4xStTSUaqUeFWdgBJQUpH6c71SqUoFUT4tnMd5QCkLo6qz4tb32Y7nxw45srzHs7EBW09jNLvmfPu1JjTbOAXc4JnIV_fiD1N6FCQd0KUzppGwxJnKZQtYyHIkdO7Lxo09Yrod7uaynDofyo43YkU82WXI-2mEffXxePOntEPHF6VwUV5v1dvWlvPj--evq_KJ0UkAqe-h0C05r2wojhWp7LXXLnKA9Q2atkrznHJimiEzKXoHWGnhHrZHoWs0Xxbvj3Nsw3c05cLPz0eEw2BGnOTaG8kpwzav_ktpUYCqWhUXx9kGSC6GY4TKD7x8EoVLAONcAGX39D3ozzSEvK0cExrgAdYgIRyj_RYwB--Y2-J0N-wZocyhEc1-I5lCI5liI7Lw5DbbR2aEPdnQ-_hUNCAbsEODVkfOI-OdZcK401fw3AUu-nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912234176</pqid></control><display><type>article</type><title>Thin-Film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Stojanovic, N. ; Jongsin Yun ; Washington, E.B.K. ; Berg, J.M. ; Holtz, M.W. ; Temkin, H.</creator><creatorcontrib>Stojanovic, N. ; Jongsin Yun ; Washington, E.B.K. ; Berg, J.M. ; Holtz, M.W. ; Temkin, H.</creatorcontrib><description>We present a new method for measuring thermal conductivities of films with nanoscale thickness. The method combines a micro electrothermal test structure with a finite-element- based data analysis procedure. The test device consists of two serpentine nickel structures, which serve as resistive heaters and resistance temperature detectors, on top of the sample. The sample is supported by a silicon nitride membrane. Analytical solution of the heat flow is infeasible, making interpretation of the data difficult. To address this, we use a finite-element model of the test structure and apply nonlinear least-squares estimation to extract the desired material parameter values. The approach permits simultaneous extraction of multiple parameters. We demonstrate our technique by simultaneously obtaining the thermal conductivity of a 280 mum x 80 mum x 140 nm thick aluminum sample and the 360 mum x 160 mum x 180 nm thick silicon nitride support membrane. The thermal conductivity measured for the silicon nitride thin film is 2.1 W/mK, which is in agreement with reported values for films of this thickness. The thermal conductivity of the Al thin film is found to be 94 W/mK, which is significantly lower than reported bulk values and consistent both with reported trends for thin metallic films and with values that were obtained using electrical resistivity measurements and the Wiedemann-Franz law.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2007.900877</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aluminum ; Biomembranes ; Chemistry ; Colloidal state and disperse state ; Conductive films ; Conductivity ; Conductivity measurement ; Data analysis ; Exact sciences and technology ; Finite element methods ; General and physical chemistry ; Heat transfer ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical analysis ; Mathematical models ; Measurement ; Mechanical instruments, equipment and techniques ; Membranes ; Micromechanical devices and systems ; microthermal devices ; Nanostructure ; Physics ; Silicon ; Silicon nitride ; Studies ; Testing ; Thermal conductivity ; thermal variables measurement ; Thickness measurement ; Thin films ; Transistors</subject><ispartof>Journal of microelectromechanical systems, 2007-10, Vol.16 (5), p.1269-1275</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-f1d8b1c88ab49547bf858b2c40f2e2aa753f331280ee255f7188813d0a95ecb83</citedby><cites>FETCH-LOGICAL-c541t-f1d8b1c88ab49547bf858b2c40f2e2aa753f331280ee255f7188813d0a95ecb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4337808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4337808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19142121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stojanovic, N.</creatorcontrib><creatorcontrib>Jongsin Yun</creatorcontrib><creatorcontrib>Washington, E.B.K.</creatorcontrib><creatorcontrib>Berg, J.M.</creatorcontrib><creatorcontrib>Holtz, M.W.</creatorcontrib><creatorcontrib>Temkin, H.</creatorcontrib><title>Thin-Film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analysis</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>We present a new method for measuring thermal conductivities of films with nanoscale thickness. The method combines a micro electrothermal test structure with a finite-element- based data analysis procedure. The test device consists of two serpentine nickel structures, which serve as resistive heaters and resistance temperature detectors, on top of the sample. The sample is supported by a silicon nitride membrane. Analytical solution of the heat flow is infeasible, making interpretation of the data difficult. To address this, we use a finite-element model of the test structure and apply nonlinear least-squares estimation to extract the desired material parameter values. The approach permits simultaneous extraction of multiple parameters. We demonstrate our technique by simultaneously obtaining the thermal conductivity of a 280 mum x 80 mum x 140 nm thick aluminum sample and the 360 mum x 160 mum x 180 nm thick silicon nitride support membrane. The thermal conductivity measured for the silicon nitride thin film is 2.1 W/mK, which is in agreement with reported values for films of this thickness. The thermal conductivity of the Al thin film is found to be 94 W/mK, which is significantly lower than reported bulk values and consistent both with reported trends for thin metallic films and with values that were obtained using electrical resistivity measurements and the Wiedemann-Franz law.</description><subject>Aluminum</subject><subject>Biomembranes</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Conductive films</subject><subject>Conductivity</subject><subject>Conductivity measurement</subject><subject>Data analysis</subject><subject>Exact sciences and technology</subject><subject>Finite element methods</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Membranes</subject><subject>Micromechanical devices and systems</subject><subject>microthermal devices</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>Studies</subject><subject>Testing</subject><subject>Thermal conductivity</subject><subject>thermal variables measurement</subject><subject>Thickness measurement</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkktv1DAURiMEEmXgByA2FhKPTQZfP2J7WYYZHmrEotN15Dg31FUmaW0HaZb8czydEUgsysqWfM7Vp-uvKF4CXQJQ8-Fbva4vl4xStTSUaqUeFWdgBJQUpH6c71SqUoFUT4tnMd5QCkLo6qz4tb32Y7nxw45srzHs7EBW09jNLvmfPu1JjTbOAXc4JnIV_fiD1N6FCQd0KUzppGwxJnKZQtYyHIkdO7Lxo09Yrod7uaynDofyo43YkU82WXI-2mEffXxePOntEPHF6VwUV5v1dvWlvPj--evq_KJ0UkAqe-h0C05r2wojhWp7LXXLnKA9Q2atkrznHJimiEzKXoHWGnhHrZHoWs0Xxbvj3Nsw3c05cLPz0eEw2BGnOTaG8kpwzav_ktpUYCqWhUXx9kGSC6GY4TKD7x8EoVLAONcAGX39D3ozzSEvK0cExrgAdYgIRyj_RYwB--Y2-J0N-wZocyhEc1-I5lCI5liI7Lw5DbbR2aEPdnQ-_hUNCAbsEODVkfOI-OdZcK401fw3AUu-nA</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Stojanovic, N.</creator><creator>Jongsin Yun</creator><creator>Washington, E.B.K.</creator><creator>Berg, J.M.</creator><creator>Holtz, M.W.</creator><creator>Temkin, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7QF</scope><scope>F28</scope><scope>JG9</scope></search><sort><creationdate>20071001</creationdate><title>Thin-Film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analysis</title><author>Stojanovic, N. ; Jongsin Yun ; Washington, E.B.K. ; Berg, J.M. ; Holtz, M.W. ; Temkin, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-f1d8b1c88ab49547bf858b2c40f2e2aa753f331280ee255f7188813d0a95ecb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aluminum</topic><topic>Biomembranes</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Conductive films</topic><topic>Conductivity</topic><topic>Conductivity measurement</topic><topic>Data analysis</topic><topic>Exact sciences and technology</topic><topic>Finite element methods</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Membranes</topic><topic>Micromechanical devices and systems</topic><topic>microthermal devices</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>Studies</topic><topic>Testing</topic><topic>Thermal conductivity</topic><topic>thermal variables measurement</topic><topic>Thickness measurement</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stojanovic, N.</creatorcontrib><creatorcontrib>Jongsin Yun</creatorcontrib><creatorcontrib>Washington, E.B.K.</creatorcontrib><creatorcontrib>Berg, J.M.</creatorcontrib><creatorcontrib>Holtz, M.W.</creatorcontrib><creatorcontrib>Temkin, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stojanovic, N.</au><au>Jongsin Yun</au><au>Washington, E.B.K.</au><au>Berg, J.M.</au><au>Holtz, M.W.</au><au>Temkin, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-Film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analysis</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2007-10-01</date><risdate>2007</risdate><volume>16</volume><issue>5</issue><spage>1269</spage><epage>1275</epage><pages>1269-1275</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>We present a new method for measuring thermal conductivities of films with nanoscale thickness. The method combines a micro electrothermal test structure with a finite-element- based data analysis procedure. The test device consists of two serpentine nickel structures, which serve as resistive heaters and resistance temperature detectors, on top of the sample. The sample is supported by a silicon nitride membrane. Analytical solution of the heat flow is infeasible, making interpretation of the data difficult. To address this, we use a finite-element model of the test structure and apply nonlinear least-squares estimation to extract the desired material parameter values. The approach permits simultaneous extraction of multiple parameters. We demonstrate our technique by simultaneously obtaining the thermal conductivity of a 280 mum x 80 mum x 140 nm thick aluminum sample and the 360 mum x 160 mum x 180 nm thick silicon nitride support membrane. The thermal conductivity measured for the silicon nitride thin film is 2.1 W/mK, which is in agreement with reported values for films of this thickness. The thermal conductivity of the Al thin film is found to be 94 W/mK, which is significantly lower than reported bulk values and consistent both with reported trends for thin metallic films and with values that were obtained using electrical resistivity measurements and the Wiedemann-Franz law.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2007.900877</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2007-10, Vol.16 (5), p.1269-1275
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_miscellaneous_896196290
source IEEE Electronic Library (IEL)
subjects Aluminum
Biomembranes
Chemistry
Colloidal state and disperse state
Conductive films
Conductivity
Conductivity measurement
Data analysis
Exact sciences and technology
Finite element methods
General and physical chemistry
Heat transfer
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mathematical analysis
Mathematical models
Measurement
Mechanical instruments, equipment and techniques
Membranes
Micromechanical devices and systems
microthermal devices
Nanostructure
Physics
Silicon
Silicon nitride
Studies
Testing
Thermal conductivity
thermal variables measurement
Thickness measurement
Thin films
Transistors
title Thin-Film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-Film%20Thermal%20Conductivity%20Measurement%20Using%20Microelectrothermal%20Test%20Structures%20and%20Finite-Element-Model-Based%20Data%20Analysis&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Stojanovic,%20N.&rft.date=2007-10-01&rft.volume=16&rft.issue=5&rft.spage=1269&rft.epage=1275&rft.pages=1269-1275&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2007.900877&rft_dat=%3Cproquest_RIE%3E903643836%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912234176&rft_id=info:pmid/&rft_ieee_id=4337808&rfr_iscdi=true